1
|
Yadav V, Averette AF, Upadhya R, Heitman J. Calcineurin controls the cytokinesis machinery during thermal stress in Cryptococcus deneoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638697. [PMID: 40093176 PMCID: PMC11908158 DOI: 10.1101/2025.02.17.638697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Calcineurin is a highly conserved phosphatase that plays a central role in sensing calcium and governing transcriptional, post-transcriptional, and post-translational signaling networks. Calcineurin is a heterodimer consisting of a catalytic A subunit and a regulatory B subunit. Through downstream effectors, calcineurin signaling drives myriad responses in different organisms. In the fungal pathogenic Cryptococcus species complex that infects humans, calcineurin governs thermotolerance and is essential for growth at high temperature and pathogenesis. In Cryptococcus deneoformans , the underlying molecular functions of this critical signaling cascade are not well understood. In this study, we conducted a genetic screen and identified genetic changes that suppress the requirement for calcineurin during high-temperature growth. Our results identified two mechanisms that bypass the requirement for calcineurin function. The first mechanism involves segmental aneuploidy via both amplification as well as loss of chromosome fragments. The second mechanism involves dominant amino acid substitution mutations in the genes encoding three proteins, Chs6, Imp2, and Cts1, orthologs of components of the Ingression Progression Complex required for septation and budding in Saccharomyces cerevisiae . Loss of calcineurin activity causes chitin and chitosan accumulation and severe budding defects, whereas suppressor mutations largely restore growth and cytokinesis in the absence of calcineurin. These findings reveal the calcineurin signaling cascade controls a conserved cytokinesis machinery at the mitotic exit network during thermal stress. Significance Statement Cellular responses to external stress conditions involve activation of signaling cascades, which act via effectors to govern key cellular processes. One such signaling cascade involves the phosphatase calcineurin, the conserved target of cyclosporin A and FK506 that governs myriad cellular functions through its substrates. In human fungal pathogens, calcineurin is critical for pathogenicity. Here, we employed a genetic screen to map the functional interactions of this signaling cascade and repeatedly identified mutations in components of a single protein complex, suggesting a focused downstream response. With genetic and biochemical approaches, we established that these proteins play a crucial role in cell division at high temperature enabling cell division and revealing new avenues of research that could identify potential antifungal drug targets.
Collapse
|
2
|
Saar D, Lennartsson CLE, Weidner P, Burgermeister E, Kragelund BB. The Myotubularin Related Proteins and the Untapped Interaction Potential of Their Disordered C-Terminal Regions. Proteins 2025; 93:831-854. [PMID: 39614773 DOI: 10.1002/prot.26774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 03/05/2025]
Abstract
Intrinsically disordered regions (IDRs) of proteins remain understudied with enigmatic sequence features relevant to their functions. Members of the myotubularin-related protein (MTMR) family contain uncharacterized IDRs. After decades of research on their phosphatase activity, recent work on the C-terminal IDRs of MTMR7 revealed new interactions and important new functions beyond the phosphatase function. Here we take a broader look at the C-terminal domains (CTDs) of 14 human MTMRs and use bioinformatic tools and biophysical methods to ask which other functions may be probable in this protein family. The predictions show that the CTDs are disordered and carry short linear motifs (SLiMs) important for targeting of MTMRs to defined subcellular compartments and implicating them in signaling, phase separation, interaction with diverse proteins, including transcription factors and are of relevance for cancer research and neuroscience. We also present experimental methods to study the CTDs and use them to characterize the coiled coil (CC) domains of MTMR7 and MTMR9. We show homo- and hetero-oligomerization with preference for MTMR7-CC to form dimers, while MTMR9-CC forms trimers. We relate the results to sequence features and make predictions for the structural landscape of other MTMRs. Our work gives a broad insight into the so far unrecognized features and SLiMs in MTMR-CTDs, and provides the basis for more in-depth experimental research on this diverse protein family and understudied IDRs in proteins in general.
Collapse
Affiliation(s)
- Daniel Saar
- REPIN, University of Copenhagen, Copenhagen, Denmark
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Philip Weidner
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Birthe B Kragelund
- REPIN, University of Copenhagen, Copenhagen, Denmark
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Peti W, Padi SKR, Page R. Combining cryo-electron microscopy (cryo-EM) with orthogonal solution state methods to define the molecular basis of the phosphoprotein phosphatase family regulation and substrate specificity. Curr Opin Struct Biol 2025; 91:102992. [PMID: 39951957 PMCID: PMC11885005 DOI: 10.1016/j.sbi.2025.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/17/2025]
Abstract
Protein phosphatases are dynamic enzymes that exhibit complex regulatory mechanisms, with disruptions in these regulatory processes associated with disease. It is now clear that many phosphatases assemble into large macromolecular complexes via the interaction of phosphatase-specific regulatory proteins and substrates containing short linear motifs (SLiMs) or short helical motifs (SHelMs). Here, we review how cryo-electron microscopy (cryo-EM) integrated with orthogonal methods to study dynamic protein-protein interactions (NMR spectroscopy, hydrogen-deuterium exchange mass spectrometry, among others) is leading to new discoveries about the mechanisms controlling phosphatase assembly, substrate recruitment and dephosphorylation and, in turn, are providing novel strategies for targeting phosphatase-related diseases. This review focuses on the recently determined structures and regulation of the phosphoprotein phosphatase (PPP) family of ser/thr phosphatases-PP1, PP2A, Calcineurin and PP5.
Collapse
Affiliation(s)
- Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, USA.
| | - Sathish K R Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA.
| |
Collapse
|
4
|
Yin X, Zhang Z, Zhou R, Zuo P, Sang D, Zhou S, Shi B, Chen L, Wu C, Guo Y, Wang F, Zhang EE, Li Q, Yanagisawa M, Liu Q. Calcineurin governs baseline and homeostatic regulations of non-rapid eye movement sleep in mice. Proc Natl Acad Sci U S A 2025; 122:e2418317122. [PMID: 39847332 PMCID: PMC11789068 DOI: 10.1073/pnas.2418317122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Sleep need accumulates during waking and dissipates during sleep to maintain sleep homeostasis (process S). Besides the regulation of daily (baseline) sleep amount, homeostatic sleep regulation commonly refers to the universal phenomenon that sleep deprivation (SD) causes an increase of sleep need, hence, the amount and intensity of subsequent recovery sleep. The central regulators and signaling pathways that govern the baseline and homeostatic sleep regulations in mammals remain unclear. Here, we report that enhanced activity of calcineurin Aα (CNAα)-a catalytic subunit of calcineurin-in the mouse brain neurons sharply increases the amount (to ~17-h/d) and delta power-a measure of intensity-of non-rapid eye movement sleep (NREMS). Knockout of the regulatory (CnB1) or catalytic (CnAα and CnAβ) subunits of calcineurin diminishes the amount (to ~4-h/d) and delta power of baseline NREMS, but also nearly abrogates the homeostatic recovery NREMS following SD. Accordingly, mathematical modeling of process S reveals an inability to accumulate sleep need during spontaneous or forced wakefulness in calcineurin deficient mice. Moreover, calcineurin promotes baseline NREMS by antagonizing wake-promoting protein kinase A and, in part, by activating sleep-promoting kinase SIK3. Together, these results indicate that calcineurin is an important regulator of sleep need and governs both baseline and homeostatic regulations of NREMS in mice.
Collapse
Affiliation(s)
- Xin Yin
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing100871, China
- National Institute of Biological Sciences, Beijing102206, China
| | - Zihan Zhang
- National Institute of Biological Sciences, Beijing102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Rui Zhou
- National Institute of Biological Sciences, Beijing102206, China
| | - Peng Zuo
- National Institute of Biological Sciences, Beijing102206, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Di Sang
- National Institute of Biological Sciences, Beijing102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Shuang Zhou
- National Institute of Biological Sciences, Beijing102206, China
- College of Life Sciences, Beijing Normal University, Beijing100875, China
| | - Bihan Shi
- National Institute of Biological Sciences, Beijing102206, China
| | - Lin Chen
- National Institute of Biological Sciences, Beijing102206, China
| | - Chongyang Wu
- National Institute of Biological Sciences, Beijing102206, China
| | - Ying Guo
- National Institute of Biological Sciences, Beijing102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing102206, China
- New Cornerstone Science Laboratory, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| |
Collapse
|
5
|
Yu J, Liu H, Gao R, Wang TV, Li C, Liu Y, Yang L, Xu Y, Cui Y, Jia C, Huang J, Chen PR, Rao Y. Calcineurin: An essential regulator of sleep revealed by biochemical, chemical biological, and genetic approaches. Cell Chem Biol 2025; 32:157-173.e7. [PMID: 39740665 DOI: 10.1016/j.chembiol.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Research into mechanisms underlying sleep traditionally relies on electrophysiology and genetics. Because sleep can only be measured on whole animals by behavioral observations and physical means, no sleep research was initiated by biochemical and chemical biological approaches. We used phosphorylation sites of kinases important for sleep as targets for biochemical and chemical biological approaches. Sleep was increased in mice carrying a threonine-to-alanine substitution at residue T469 of salt-inducible kinase 3 (SIK3). Our biochemical purification and photo-crosslinking revealed calcineurin (CaN) dephosphorylation, both in vitro and in vivo, of SIK3 at T469 and S551, but not T221. Knocking down CaN regulatory subunit reduced daily sleep by more than 5 h, exceeding all known mouse mutants. Our work uncovered a critical physiological role for CaN in sleep and pioneered biochemical purification and chemical biology as effective approaches to study sleep.
Collapse
Affiliation(s)
- Jianjun Yu
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Huijie Liu
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Rui Gao
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Tao V Wang
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Chenggang Li
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Yuxiang Liu
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Lu Yang
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Ying Xu
- National Center for Protein Sciences Phoenix, Beijing, China
| | - Yunfeng Cui
- Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China
| | - Chenxi Jia
- National Center for Protein Sciences Phoenix, Beijing, China
| | - Juan Huang
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Peng R Chen
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yi Rao
- Laboratory of Neurochemical Biology, Peking-Tsinghua Center for Life Sciences, Peking-Tsinghua-NIBS (PTN) Graduate Program, School of Life Sciences, Peking University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering; School of Pharmaceutical Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chinese Institutes for Medical Research (CIMR), Beijing, China; Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Bradburn DA, Reis JC, Qayyum S, Viennet T, Arthanari H, Cyert MS. A novel motif in calcimembrin/C16orf74 dictates multimeric dephosphorylation by calcineurin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.12.593783. [PMID: 38798520 PMCID: PMC11118366 DOI: 10.1101/2024.05.12.593783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Calcineurin, the Ca 2+ /calmodulin-activated protein phosphatase, recognizes substrates and regulators via short linear motifs, PxIxIT and LxVP, which dock to distinct sites on calcineurin and determine calcineurin distribution and catalysis, respectively. Calcimembrin/C16orf74 (CLMB), an intrinsically disordered microprotein whose expression correlates with poor cancer outcomes, targets calcineurin to membranes where it may promote oncogenesis by shaping calcineurin signaling. We show that CLMB associates with membranes via lipidation, i.e. N-myristoylation and reversible S-acylation. Furthermore, CLMB contains an unusual composite 'LxVPxIxIT' motif, that binds the PxIxIT-docking site on calcineurin with extraordinarily high affinity when phosphorylated, 33 LxVPxIxITxx(p)T 44 . Calcineurin dephosphorylates CLMB to decrease this affinity, but Thr44 is protected from dephosphorylation when PxIxIT-bound. We propose that CLMB is dephosphorylated in multimeric complexes, where one PxIxIT-bound CLMB recruits calcineurin to membranes, allowing a second CLMB to engage via its LxVP motif to be dephosphorylated. In vivo and in vitro data, including nuclear magnetic resonance (NMR) analyses of CLMB-calcineurin complexes, supports this model. Thus, the CLMB composite motif imposes unique properties to calcineurin signaling at membranes including sensitivity to CLMB:calcineurin ratios, CLMB phosphorylation and dynamic S-acylation.
Collapse
|
7
|
Gagoski D, Rube HT, Rastogi C, Melo LAN, Li X, Voleti R, Shah NH, Bussemaker HJ. Accurate sequence-to-affinity models for SH2 domains from multi-round peptide binding assays coupled with free-energy regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.23.630085. [PMID: 39764007 PMCID: PMC11703206 DOI: 10.1101/2024.12.23.630085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Short linear peptide motifs play important roles in cell signaling. They can act as modification sites for enzymes and as recognition sites for peptide binding domains. SH2 domains bind specifically to tyrosine-phosphorylated proteins, with the affinity of the interaction depending strongly on the flanking sequence. Quantifying this sequence specificity is critical for deciphering phosphotyrosine-dependent signaling networks. In recent years, protein display technologies and deep sequencing have allowed researchers to profile SH2 domain binding across thousands of candidate ligands. Here, we present a concerted experimental and computational strategy that improves the predictive power of SH2 specificity profiling. Through multi-round affinity selection and deep sequencing with large randomized phosphopeptide libraries, we produce suitable data to train an additive binding free energy model that covers the full theoretical ligand sequence space. Our models can be used to predict signaling network connectivity and the impact of missense variants in phosphoproteins on SH2 binding.
Collapse
Affiliation(s)
- Dejan Gagoski
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - H. Tomas Rube
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Applied Mathematics, University of California-Merced, Merced, CA, USA
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lucas A. N. Melo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Xiaoting Li
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rashmi Voleti
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Harmen J. Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Yang Y, Li Y, Shang H, Liu Y, Li W, Chen L, Cheng N, Zhang Y, Zhang N, Yin Y, Tong L, Li Z, Yang J, Luo J. An artificial peptide inhibits autophagy through calcineurin-TFEB pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119853. [PMID: 39353470 DOI: 10.1016/j.bbamcr.2024.119853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
We previously reported that a bioactive peptide (pep3) can potently inhibit the enzyme activity of purified calcineurin (CN). In this paper, we further demonstrate that transfected pep3 can strongly inhibit CN enzyme activity in HEK293 cells. Transcription factor EB (TFEB) plays an important role in the autophagy-lysosome pathway (ALP) as one of the substrates of CN, so we study the effect of pep3 on the CN-TFEB-ALP pathway. Pep3 can significantly inhibit the mRNA levels of the TFEB downstream genes and the expression of the autophagy-associated proteins, and autophagy flux in HEK293 cells. We also validated the inhibitory effect of pep3 on autophagy in mice. These findings may provide a new idea for discovering more CN inhibitors and autophagy inhibitory drugs.
Collapse
Affiliation(s)
- Yumeng Yang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanan Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Hanxiao Shang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 111016, China
| | - Yueyang Liu
- Shenyang Key Laboratory of Vascular Biology, Science and Research Center, Department of Pharmacology, Shenyang Medical College, Shenyang, China
| | - Wenying Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Limin Chen
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Na Cheng
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuchen Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanxia Yin
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Li Tong
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhimei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 111016, China.
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
9
|
Chimura T, Manabe T. Ca2+-PP2B-PSD-95 axis: A novel regulatory mechanism of the phosphorylation state of Serine 295 of PSD-95. PLoS One 2024; 19:e0313441. [PMID: 39509447 PMCID: PMC11542788 DOI: 10.1371/journal.pone.0313441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
The phosphorylation state of PSD-95 at Serine 295 (Ser295) is important for the regulation of synaptic plasticity. Although the activation of NMDA receptors (NMDARs), which initiates an intracellular calcium signaling cascade, decreases phosphorylated Ser295 (pS295) of PSD-95, the molecular mechanisms are not fully understood. We found that the calcium-activated protein phosphatase PP2B dephosphorylated pS295 not only in basal conditions but also in NMDAR-activated conditions in cultured neurons. The biochemical assay also revealed the dephosphorylation of pS295 by PP2B, consistently supporting the results obtained using neurons. The newly identified calcium signaling cascade "Ca2+-PP2B-PSD-95 axis" would play an important role in the molecular mechanism for NMDA receptor-dependent plasticity.
Collapse
Affiliation(s)
- Takahiko Chimura
- Department of Basic Medical Sciences, Institute of Medical Science, Division of Neuronal Network, University of Tokyo, Tokyo, Japan
| | - Toshiya Manabe
- Department of Basic Medical Sciences, Institute of Medical Science, Division of Neuronal Network, University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Shaw AL, Suresh S, Parson MAH, Harris NJ, Jenkins ML, Yip CK, Burke JE. Structure of calcineurin bound to PI4KA reveals dual interface in both PI4KA and FAM126A. Structure 2024; 32:1973-1983.e6. [PMID: 39216471 DOI: 10.1016/j.str.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Phosphatidylinositol 4-kinase alpha (PI4KA) maintains the phosphatidylinositol 4-phosphate (PI4P) and phosphatidylserine pools of the plasma membrane. A key regulator of PI4KA is its association into a complex with TTC7 and FAM126 proteins. This complex can be regulated by the CNAβ1 isoform of the phosphatase calcineurin. We previously identified that CNAβ1 directly binds to FAM126A. Here, we report a cryoelectron microscopic (cryo-EM) structure of a truncated PI4KA complex bound to calcineurin, revealing a unique direct interaction between PI4KA and calcineurin. Hydrogen deuterium exchange mass spectrometry (HDX-MS) and computational analysis show that calcineurin forms a complex with an evolutionarily conserved IKISVT sequence in PI4KA's horn domain. We also characterized conserved LTLT and PSISIT calcineurin binding sequences in the C terminus of FAM126A. These dual sites in PI4KA and FAM126A are both in close proximity to phosphorylation sites in the PI4KA complex, suggesting key roles of calcineurin-regulated phosphosites in PI4KA regulation. This work reveals novel insight into how calcineurin can regulate PI4KA activity.
Collapse
Affiliation(s)
- Alexandria L Shaw
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
| |
Collapse
|
11
|
Jones AC, Wu J, Taylor SS. How an intrinsically disordered regulatory subunit assembles a PP1:eIF2 complex. Cell Rep 2024; 43:114011. [PMID: 38573854 DOI: 10.1016/j.celrep.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Fatalska et al.1 use an interdisciplinary strategy to elucidate how an intrinsically disordered regulatory subunit of protein phosphatase 1 binds trimeric eIF2 and positions the phosphatase-substrate complex for dephosphorylation. As validation, they show that a disease mutation abolishes the interaction.
Collapse
Affiliation(s)
- Alexander C Jones
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jian Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Yadav V, Mohan R, Sun S, Heitman J. Calcineurin contributes to RNAi-mediated transgene silencing and small interfering RNA production in the human fungal pathogen Cryptococcus neoformans. Genetics 2024; 226:iyae010. [PMID: 38279937 PMCID: PMC10917508 DOI: 10.1093/genetics/iyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 07/27/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Adaptation to external environmental challenges at the cellular level requires rapid responses and involves relay of information to the nucleus to drive key gene expression changes through downstream transcription factors. Here, we describe an alternative route of adaptation through a direct role for cellular signaling components in governing gene expression via RNA interference-mediated small RNA production. Calcium-calcineurin signaling is a highly conserved signaling cascade that plays central roles in stress adaptation and virulence of eukaryotic pathogens, including the human fungal pathogen Cryptococcus neoformans. Upon activation in C. neoformans, calcineurin localizes to P-bodies, membraneless organelles that are also the site for RNA processing. Here, we studied the role of calcineurin and its substrates in RNAi-mediated transgene silencing. Our results reveal that calcineurin regulates both the onset and the reversion of transgene silencing. We found that some calcineurin substrates that localize to P-bodies also regulate transgene silencing but in opposing directions. Small RNA sequencing in mutants lacking calcineurin or its targets revealed a role for calcineurin in small RNA production. Interestingly, the impact of calcineurin and its substrates was found to be different in genome-wide analysis, suggesting that calcineurin may regulate small RNA production in C. neoformans through additional pathways. Overall, these findings define a mechanism by which signaling machinery induced by external stimuli can directly alter gene expression to accelerate adaptative responses and contribute to genome defense.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Riya Mohan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
13
|
Yadav V, Mohan R, Sun S, Heitman J. Calcineurin contributes to RNAi-mediated transgene silencing and small interfering RNA production in the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550548. [PMID: 37546757 PMCID: PMC10402008 DOI: 10.1101/2023.07.25.550548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Adaptation to external environmental challenges at the cellular level requires rapid responses and involves relay of information to the nucleus to drive key gene expression changes through downstream transcription factors. Here, we describe an alternative route of adaptation through a direct role for cellular signaling components in governing gene expression via RNA interference-mediated small RNA production. Calcium-calcineurin signaling is a highly conserved signaling cascade that plays central roles in stress adaptation and virulence of eukaryotic pathogens, including the human fungal pathogen Cryptococcus neoformans. Upon activation in C. neoformans, calcineurin localizes to P-bodies, membrane-less organelles that are also the site for RNA processing. Here, we studied the role of calcineurin and its substrates in RNAi-mediated transgene silencing. Our results reveal that calcineurin regulates both the onset and the reversion of transgene silencing. We found that some calcineurin substrates that localize to P-bodies also regulate transgene silencing but in opposing directions. Small RNA sequencing in mutants lacking calcineurin or its targets revealed a role for calcineurin in small RNA production. Interestingly, the impact of calcineurin and its substrates was found to be different in genome-wide analysis, suggesting that calcineurin may regulate small RNA production in C. neoformans through additional pathways. Overall, these findings define a mechanism by which signaling machinery induced by external stimuli can directly alter gene expression to accelerate adaptative responses and contribute to genome defense.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Riya Mohan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
14
|
Wu CG, Balakrishnan VK, Merrill RA, Parihar PS, Konovolov K, Chen YC, Xu Z, Wei H, Sundaresan R, Cui Q, Wadzinski BE, Swingle MR, Musiyenko A, Chung WK, Honkanen RE, Suzuki A, Huang X, Strack S, Xing Y. B56δ long-disordered arms form a dynamic PP2A regulation interface coupled with global allostery and Jordan's syndrome mutations. Proc Natl Acad Sci U S A 2024; 121:e2310727120. [PMID: 38150499 PMCID: PMC10769853 DOI: 10.1073/pnas.2310727120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Å and harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.
Collapse
Affiliation(s)
- Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
| | - Vijaya K. Balakrishnan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Ronald A. Merrill
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA52242
| | - Pankaj S. Parihar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Kirill Konovolov
- Chemistry Department, University of Wisconsin at Madison, Madison, WI53706
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Molecular and Cellular Pharmacology Program, University of Wisconsin at Madison, Madison, WI53706
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA52242
| | - Hui Wei
- The Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY10027
| | - Ramya Sundaresan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA02215
| | | | - Mark R. Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA02215
| | - Richard E. Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
- Molecular and Cellular Pharmacology Program, University of Wisconsin at Madison, Madison, WI53706
| | - Xuhui Huang
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
- Chemistry Department, University of Wisconsin at Madison, Madison, WI53706
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA52242
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
| |
Collapse
|
15
|
Vales S, Kryukova J, Chandra S, Smagurauskaite G, Payne M, Clark CJ, Hafner K, Mburu P, Denisov S, Davies G, Outeiral C, Deane CM, Morris GM, Bhattacharya S. Discovery and pharmacophoric characterization of chemokine network inhibitors using phage-display, saturation mutagenesis and computational modelling. Nat Commun 2023; 14:5763. [PMID: 37717048 PMCID: PMC10505172 DOI: 10.1038/s41467-023-41488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
CC and CXC-chemokines are the primary drivers of chemotaxis in inflammation, but chemokine network redundancy thwarts pharmacological intervention. Tick evasins promiscuously bind CC and CXC-chemokines, overcoming redundancy. Here we show that short peptides that promiscuously bind both chemokine classes can be identified from evasins by phage-display screening performed with multiple chemokines in parallel. We identify two conserved motifs within these peptides and show using saturation-mutagenesis phage-display and chemotaxis studies of an exemplar peptide that an anionic patch in the first motif and hydrophobic, aromatic and cysteine residues in the second are functionally necessary. AlphaFold2-Multimer modelling suggests that the peptide occludes distinct receptor-binding regions in CC and in CXC-chemokines, with the first and second motifs contributing ionic and hydrophobic interactions respectively. Our results indicate that peptides with broad-spectrum anti-chemokine activity and therapeutic potential may be identified from evasins, and the pharmacophore characterised by phage display, saturation mutagenesis and computational modelling.
Collapse
Affiliation(s)
- Serena Vales
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jhanna Kryukova
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Soumyanetra Chandra
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Gintare Smagurauskaite
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Megan Payne
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Charlie J Clark
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Katrin Hafner
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Philomena Mburu
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Stepan Denisov
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Graham Davies
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Carlos Outeiral
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - Garrett M Morris
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - Shoumo Bhattacharya
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
16
|
Nguyen H, Kettenbach AN. Substrate and phosphorylation site selection by phosphoprotein phosphatases. Trends Biochem Sci 2023; 48:713-725. [PMID: 37173206 PMCID: PMC10523993 DOI: 10.1016/j.tibs.2023.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Dynamic protein phosphorylation and dephosphorylation are essential regulatory mechanisms that ensure proper cellular signaling and biological functions. Deregulation of either reaction has been implicated in several human diseases. Here, we focus on the mechanisms that govern the specificity of the dephosphorylation reaction. Most cellular serine/threonine dephosphorylation is catalyzed by 13 highly conserved phosphoprotein phosphatase (PPP) catalytic subunits, which form hundreds of holoenzymes by binding to regulatory and scaffolding subunits. PPP holoenzymes recognize phosphorylation site consensus motifs and interact with short linear motifs (SLiMs) or structural elements distal to the phosphorylation site. We review recent advances in understanding the mechanisms of PPP site-specific dephosphorylation preference and substrate recruitment and highlight examples of their interplay in the regulation of cell division.
Collapse
Affiliation(s)
- Hieu Nguyen
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Arminja N Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA; Dartmouth Cancer Center, Lebanon, NH 03756, USA.
| |
Collapse
|
17
|
Davey NE, Simonetti L, Ivarsson Y. The next wave of interactomics: Mapping the SLiM-based interactions of the intrinsically disordered proteome. Curr Opin Struct Biol 2023; 80:102593. [PMID: 37099901 DOI: 10.1016/j.sbi.2023.102593] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023]
Abstract
Short linear motifs (SLiMs) are a unique and ubiquitous class of protein interaction modules that perform key regulatory functions and drive dynamic complex formation. For decades, interactions mediated by SLiMs have accumulated through detailed low-throughput experiments. Recent methodological advances have opened this previously underexplored area of the human interactome to high-throughput protein-protein interaction discovery. In this article, we discuss that SLiM-based interactions represent a significant blind spot in the current interactomics data, introduce the key methods that are illuminating the elusive SLiM-mediated interactome of the human cell on a large scale, and discuss the implications for the field.
Collapse
Affiliation(s)
- Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
18
|
Tsekitsidou E, Wong CJ, Ulengin-Talkish I, Barth AIM, Stearns T, Gingras AC, Wang JT, Cyert MS. Calcineurin associates with centrosomes and regulates cilia length maintenance. J Cell Sci 2023; 136:jcs260353. [PMID: 37013443 PMCID: PMC10163345 DOI: 10.1242/jcs.260353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Calcineurin, or protein phosphatase 2B (PP2B), the Ca2+ and calmodulin-activated phosphatase and target of immunosuppressants, has many substrates and functions that remain uncharacterized. By combining rapid proximity-dependent labeling with cell cycle synchronization, we mapped the spatial distribution of calcineurin in different cell cycle stages. While calcineurin-proximal proteins did not vary significantly between interphase and mitosis, calcineurin consistently associated with multiple centrosomal and/or ciliary proteins. These include POC5, which binds centrins in a Ca2+-dependent manner and is a component of the luminal scaffold that stabilizes centrioles. We show that POC5 contains a calcineurin substrate motif (PxIxIT type) that mediates calcineurin binding in vivo and in vitro. Using indirect immunofluorescence and ultrastructure expansion microscopy, we demonstrate that calcineurin colocalizes with POC5 at the centriole, and further show that calcineurin inhibitors alter POC5 distribution within the centriole lumen. Our discovery that calcineurin directly associates with centriolar proteins highlights a role for Ca2+ and calcineurin signaling at these organelles. Calcineurin inhibition promotes elongation of primary cilia without affecting ciliogenesis. Thus, Ca2+ signaling within cilia includes previously unknown functions for calcineurin in maintenance of cilia length, a process that is frequently disrupted in ciliopathies.
Collapse
Affiliation(s)
| | - Cassandra J. Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | | | | | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jennifer T. Wang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Martha S. Cyert
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Wu CG, Balakrishnan VK, Parihar PS, Konovolov K, Chen YC, Merrill RA, Wei H, Carragher B, Sundaresan R, Cui Q, Wadzinski BE, Swingle MR, Musiyenko A, Honkanen R, Chung WK, Suzuki A, Strack S, Huang X, Xing Y. Extended regulation interface coupled to the allosteric network and disease mutations in the PP2A-B56δ holoenzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.530109. [PMID: 37066309 PMCID: PMC10103954 DOI: 10.1101/2023.03.09.530109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An increasing number of mutations associated with devastating human diseases are diagnosed by whole-genome/exon sequencing. Recurrent de novo missense mutations have been discovered in B56δ (encoded by PPP2R5D), a regulatory subunit of protein phosphatase 2A (PP2A), that cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Single-particle cryo-EM structures show that the PP2A-B56δ holoenzyme possesses closed latent and open active forms. In the closed form, the long, disordered arms of B56δ termini fold against each other and the holoenzyme core, establishing dual autoinhibition of the phosphatase active site and the substrate-binding protein groove. The resulting interface spans over 190 Å and harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is close to an allosteric network responsive to activation phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations perturb the activation phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the wild variant.
Collapse
Affiliation(s)
- Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Vijaya K. Balakrishnan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Pankaj S. Parihar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Kirill Konovolov
- Chemistry Department, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Molecular and Cellular Pharmacology program, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wei
- New York Structural biology Center, New York, NY 10027, USA
| | | | - Ramya Sundaresan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Qiang Cui
- Department of Chemistry, Metcalf Center for Science & Engineering, Boston University, Boston, MA 02215, USA
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark R. Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Richard Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Xuhui Huang
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
- Chemistry Department, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
| |
Collapse
|
20
|
Lim D, Tapella L, Dematteis G, Talmon M, Genazzani AA. Calcineurin Signalling in Astrocytes: From Pathology to Physiology and Control of Neuronal Functions. Neurochem Res 2023; 48:1077-1090. [PMID: 36083398 PMCID: PMC10030417 DOI: 10.1007/s11064-022-03744-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 07/31/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Calcineurin (CaN), a Ca2+/calmodulin-activated serine/threonine phosphatase, acts as a Ca2+-sensitive switch regulating cellular functions through protein dephosphorylation and activation of gene transcription. In astrocytes, the principal homeostatic cells in the CNS, over-activation of CaN is known to drive pathological transcriptional remodelling, associated with neuroinflammation in diseases such as Alzheimer's disease, epilepsy and brain trauma. Recent reports suggest that, in physiological conditions, the activity of CaN in astrocytes is transcription-independent and is required for maintenance of basal protein synthesis rate and activation of astrocytic Na+/K+ pump thereby contributing to neuronal functions such as neuronal excitability and memory formation. In this contribution we overview the role of Ca2+ and CaN signalling in astroglial pathophysiology focusing on the emerging physiological role of CaN in astrocytes. We propose a model for the context-dependent switch of CaN activity from the post-transcriptional regulation of cell proteostasis in healthy astrocytes to the CaN-dependent transcriptional activation in neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, School of Medicine, Università del Piemonte Orientale "Amedeo Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| |
Collapse
|
21
|
Tubiana J, Adriana-Lifshits L, Nissan M, Gabay M, Sher I, Sova M, Wolfson HJ, Gal M. Funneling modulatory peptide design with generative models: Discovery and characterization of disruptors of calcineurin protein-protein interactions. PLoS Comput Biol 2023; 19:e1010874. [PMID: 36730443 PMCID: PMC9928118 DOI: 10.1371/journal.pcbi.1010874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/14/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Design of peptide binders is an attractive strategy for targeting "undruggable" protein-protein interfaces. Current design protocols rely on the extraction of an initial sequence from one known protein interactor of the target protein, followed by in-silico or in-vitro mutagenesis-based optimization of its binding affinity. Wet lab protocols can explore only a minor portion of the vast sequence space and cannot efficiently screen for other desirable properties such as high specificity and low toxicity, while in-silico design requires intensive computational resources and often relies on simplified binding models. Yet, for a multivalent protein target, dozens to hundreds of natural protein partners already exist in the cellular environment. Here, we describe a peptide design protocol that harnesses this diversity via a machine learning generative model. After identifying putative natural binding fragments by literature and homology search, a compositional Restricted Boltzmann Machine is trained and sampled to yield hundreds of diverse candidate peptides. The latter are further filtered via flexible molecular docking and an in-vitro microchip-based binding assay. We validate and test our protocol on calcineurin, a calcium-dependent protein phosphatase involved in various cellular pathways in health and disease. In a single screening round, we identified multiple 16-length peptides with up to six mutations from their closest natural sequence that successfully interfere with the binding of calcineurin to its substrates. In summary, integrating protein interaction and sequence databases, generative modeling, molecular docking and interaction assays enables the discovery of novel protein-protein interaction modulators.
Collapse
Affiliation(s)
- Jérôme Tubiana
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Lucia Adriana-Lifshits
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Nissan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Matan Gabay
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Sher
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Sova
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haim J. Wolfson
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Maayan Gal
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Nitro-oleic acid regulates T cell activation through post-translational modification of calcineurin. Proc Natl Acad Sci U S A 2023; 120:e2208924120. [PMID: 36652486 PMCID: PMC9942794 DOI: 10.1073/pnas.2208924120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nitro-fatty acids (NO2-FAs) are unsaturated fatty acid nitration products that exhibit anti-inflammatory actions in experimental mouse models of autoimmune and allergic diseases. These electrophilic molecules interfere with intracellular signaling pathways by reversible post-translational modification of nucleophilic amino-acid residues. Several regulatory proteins have been identified as targets of NO2-FAs, modifying their activity and promoting gene expression changes that result in anti-inflammatory effects. Herein, we report the effects of nitro-oleic acid (NO2-OA) on pro-inflammatory T cell functions, showing that 9- and 10-NOA, but not their oleic acid precursor, decrease T cell proliferation, expression of activation markers CD25 and CD71 on the plasma membrane, and IL-2, IL-4, and IFN-γ cytokine gene expressions. Moreover, we have found that NO2-OA inhibits the transcriptional activity of nuclear factor of activated T cells (NFAT) and that this inhibition takes place through the regulation of the phosphatase activity of calcineurin (CaN), hindering NFAT dephosphorylation, and nuclear translocation in activated T cells. Finally, using mass spectrometry-based approaches, we have found that NO2-OA nitroalkylates CaNA on four Cys (Cys129, 228, 266, and 372), of which only nitroalkylation on Cys372 was of importance for the regulation of CaN phosphatase activity in cells, disturbing functional CaNA/CaNB heterodimer formation. These results provide evidence for an additional mechanism by which NO2-FAs exert their anti-inflammatory actions, pointing to their potential as therapeutic bioactive lipids for the modulation of harmful T cell-mediated immune responses.
Collapse
|
23
|
Shi G, Song C, Torres Robles J, Salichos L, Lou HJ, Lam TT, Gerstein M, Turk BE. Proteome-wide screening for mitogen-activated protein kinase docking motifs and interactors. Sci Signal 2023; 16:eabm5518. [PMID: 36626580 PMCID: PMC9995140 DOI: 10.1126/scisignal.abm5518] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Essential functions of mitogen-activated protein kinases (MAPKs) depend on their capacity to selectively phosphorylate a limited repertoire of substrates. MAPKs harbor a conserved groove located outside of the catalytic cleft that binds to short linear sequence motifs found in substrates and regulators. However, the weak and transient nature of these "docking" interactions poses a challenge to defining MAPK interactomes and associated sequence motifs. Here, we describe a yeast-based genetic screening pipeline to evaluate large collections of MAPK docking sequences in parallel. Using this platform, we analyzed a combinatorial library based on the docking sequences from the MAPK kinases MKK6 and MKK7, defining features critical for binding to the stress-activated MAPKs JNK1 and p38α. Our screen of a library consisting of ~12,000 sequences from the human proteome revealed multiple MAPK-selective interactors, including many that did not conform to previously defined docking motifs. Analysis of p38α/JNK1 exchange mutants identified specific docking groove residues that mediate selective binding. Last, we verified that docking sequences identified in the screen functioned in substrate recruitment in vitro and in cultured cells. Together, these studies establish an approach to characterize MAPK docking sequences and provide a resource for future investigation of signaling downstream of p38 and JNK.
Collapse
Affiliation(s)
- Guangda Shi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claire Song
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaylissa Torres Robles
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Leonidas Salichos
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA.,Keck MS and Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
24
|
Ulengin-Talkish I, Cyert MS. A cellular atlas of calcineurin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119366. [PMID: 36191737 PMCID: PMC9948804 DOI: 10.1016/j.bbamcr.2022.119366] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Intracellular Ca2+ signals are temporally controlled and spatially restricted. Signaling occurs adjacent to sites of Ca2+ entry and/or release, where Ca2+-dependent effectors and their substrates co-localize to form signaling microdomains. Here we review signaling by calcineurin, the Ca2+/calmodulin regulated protein phosphatase and target of immunosuppressant drugs, Cyclosporin A and FK506. Although well known for its activation of the adaptive immune response via NFAT dephosphorylation, systematic mapping of human calcineurin substrates and regulators reveals unexpected roles for this versatile phosphatase throughout the cell. We discuss calcineurin function, with an emphasis on where signaling occurs and mechanisms that target calcineurin and its substrates to signaling microdomains, especially binding of cognate short linear peptide motifs (SLiMs). Calcineurin is ubiquitously expressed and regulates events at the plasma membrane, other intracellular membranes, mitochondria, the nuclear pore complex and centrosomes/cilia. Based on our expanding knowledge of localized CN actions, we describe a cellular atlas of Ca2+/calcineurin signaling.
Collapse
Affiliation(s)
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94035, United States.
| |
Collapse
|
25
|
Vaneynde P, Verbinnen I, Janssens V. The role of serine/threonine phosphatases in human development: Evidence from congenital disorders. Front Cell Dev Biol 2022; 10:1030119. [PMID: 36313552 PMCID: PMC9608770 DOI: 10.3389/fcell.2022.1030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Reversible protein phosphorylation is a fundamental regulation mechanism in eukaryotic cell and organismal physiology, and in human health and disease. Until recently, and unlike protein kinases, mutations in serine/threonine protein phosphatases (PSP) had not been commonly associated with disorders of human development. Here, we have summarized the current knowledge on congenital diseases caused by mutations, inherited or de novo, in one of 38 human PSP genes, encoding a monomeric phosphatase or a catalytic subunit of a multimeric phosphatase. In addition, we highlight similar pathogenic mutations in genes encoding a specific regulatory subunit of a multimeric PSP. Overall, we describe 19 affected genes, and find that most pathogenic variants are loss-of-function, with just a few examples of gain-of-function alterations. Moreover, despite their widespread tissue expression, the large majority of congenital PSP disorders are characterised by brain-specific abnormalities, suggesting a generalized, major role for PSPs in brain development and function. However, even if the pathogenic mechanisms are relatively well understood for a small number of PSP disorders, this knowledge is still incomplete for most of them, and the further identification of downstream targets and effectors of the affected PSPs is eagerly awaited through studies in appropriate in vitro and in vivo disease models. Such lacking studies could elucidate the exact mechanisms through which these diseases act, and possibly open up new therapeutic avenues.
Collapse
Affiliation(s)
- Pieter Vaneynde
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
- *Correspondence: Veerle Janssens,
| |
Collapse
|
26
|
Sangster AG, Zarin T, Moses AM. Evolution of short linear motifs and disordered proteins Topic: yeast as model system to study evolution. Curr Opin Genet Dev 2022; 76:101964. [PMID: 35939968 DOI: 10.1016/j.gde.2022.101964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Evolutionary preservation of protein structure had a major influence on the field of molecular evolution: changes in individual amino acids that did not disrupt protein folding would either have no effect or subtly change the 'lock' so that it could fit a new 'key'. Homology of individual amino acids could be confidently assigned through sequence alignments, and models of evolution could be tested. This view of molecular evolution excluded large regions of proteins that could not be confidently aligned, such as intrinsically disordered regions (IDRs) that do not fold into stable structures. In the last decade, major progress has been made in understanding the evolution of IDRs, much of it facilitated by new experimental and computational approaches in yeast. Here, we review this progress as well as several still outstanding questions.
Collapse
Affiliation(s)
- Ami G Sangster
- Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON M5S 3G5, Canada
| | - Taraneh Zarin
- Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON M5S 3G5, Canada. https://twitter.com/@taraneh_z
| | - Alan M Moses
- Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
27
|
Li Y, Balakrishnan VK, Rowse M, Wu CG, Bravos AP, Yadav VK, Ivarsson YI, Strack S, Novikova IV, Xing Y. Coupling to short linear motifs creates versatile PME-1 activities in PP2A holoenzyme demethylation and inhibition. eLife 2022; 11:79736. [PMID: 35924897 PMCID: PMC9398451 DOI: 10.7554/elife.79736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here, we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryoelectron microscopy structure of a PP2A-B56 holoenzyme–PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multipartite contacts at structured cores to activate the methylesterase. B56 interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56 interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.
Collapse
Affiliation(s)
- Yitong Li
- Department of Oncology, University of Wisconsin-Madison, Madison, United States
| | | | - Michael Rowse
- Indiana University - Purdue University Columbus, Columbus, United States
| | - Cheng-Guo Wu
- Department of Oncology, University of Wisconsin-Madison, Madison, United States
| | | | - Vikash K Yadav
- 5Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - YIva Ivarsson
- 5Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, United States
| | - Irina V Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, United States
| | - Yongna Xing
- Department of Oncology, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
28
|
Davey NE, Simonetti L, Ivarsson Y. ProP-PD for proteome-wide motif-mediated interaction discovery. Trends Biochem Sci 2022; 47:547-548. [PMID: 35168834 DOI: 10.1016/j.tibs.2022.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
29
|
Sánchez-Morales A, Biçer A, Panagiotopoulos V, Crecente-Garcia S, Benaiges C, Bayod S, Luís Hernández J, Busqué F, Matsoukas MT, Pérez-Riba M, Alibés R. Design and synthesis of a novel non peptide CN-NFATc signaling inhibitor for tumor suppression in triple negative breast cancer. Eur J Med Chem 2022; 238:114514. [DOI: 10.1016/j.ejmech.2022.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/04/2022]
|
30
|
Raices M, D'Angelo MA. Structure, Maintenance, and Regulation of Nuclear Pore Complexes: The Gatekeepers of the Eukaryotic Genome. Cold Spring Harb Perspect Biol 2022; 14:a040691. [PMID: 34312247 PMCID: PMC8789946 DOI: 10.1101/cshperspect.a040691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the genetic material is segregated inside the nucleus. This compartmentalization of the genome requires a transport system that allows cells to move molecules across the nuclear envelope, the membrane-based barrier that surrounds the chromosomes. Nuclear pore complexes (NPCs) are the central component of the nuclear transport machinery. These large protein channels penetrate the nuclear envelope, creating a passage between the nucleus and the cytoplasm through which nucleocytoplasmic molecule exchange occurs. NPCs are one of the largest protein assemblies of eukaryotic cells and, in addition to their critical function in nuclear transport, these structures also play key roles in many cellular processes in a transport-independent manner. Here we will review the current knowledge of the NPC structure, the cellular mechanisms that regulate their formation and maintenance, and we will provide a brief description of a variety of processes that NPCs regulate.
Collapse
Affiliation(s)
- Marcela Raices
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Maximiliano A D'Angelo
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| |
Collapse
|
31
|
Hwang T, Parker SS, Hill SM, Grant RA, Ilunga MW, Sivaraman V, Mouneimne G, Keating AE. Native proline-rich motifs exploit sequence context to target actin-remodeling Ena/VASP protein ENAH. eLife 2022; 11:70680. [PMID: 35076015 PMCID: PMC8789275 DOI: 10.7554/elife.70680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
The human proteome is replete with short linear motifs (SLiMs) of four to six residues that are critical for protein-protein interactions, yet the importance of the sequence surrounding such motifs is underexplored. We devised a proteomic screen to examine the influence of SLiM sequence context on protein-protein interactions. Focusing on the EVH1 domain of human ENAH, an actin regulator that is highly expressed in invasive cancers, we screened 36-residue proteome-derived peptides and discovered new interaction partners of ENAH and diverse mechanisms by which context influences binding. A pocket on the ENAH EVH1 domain that has diverged from other Ena/VASP paralogs recognizes extended SLiMs and favors motif-flanking proline residues. Many high-affinity ENAH binders that contain two proline-rich SLiMs use a noncanonical site on the EVH1 domain for binding and display a thermodynamic signature consistent with the two-motif chain engaging a single domain. We also found that photoreceptor cilium actin regulator (PCARE) uses an extended 23-residue region to obtain a higher affinity than any known ENAH EVH1-binding motif. Our screen provides a way to uncover the effects of proteomic context on motif-mediated binding, revealing diverse mechanisms of control over EVH1 interactions and establishing that SLiMs can’t be fully understood outside of their native context.
Collapse
Affiliation(s)
- Theresa Hwang
- Department of Biology, Massachusetts Institute of Technology
| | - Sara S Parker
- Department of Cellular & Molecular Medicine, University of Arizona
| | - Samantha M Hill
- Department of Cellular & Molecular Medicine, University of Arizona
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology
| | - Meucci W Ilunga
- Department of Biology, Massachusetts Institute of Technology
| | | | | | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| |
Collapse
|
32
|
Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Biochem J 2022; 479:1-22. [PMID: 34989786 PMCID: PMC8786283 DOI: 10.1042/bcj20200714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| |
Collapse
|
33
|
Leger MM, Ros-Rocher N, Najle SR, Ruiz-Trillo I. Rel/NF-κB Transcription Factors Emerged at the Onset of Opisthokonts. Genome Biol Evol 2022; 14:6499270. [PMID: 34999783 PMCID: PMC8763368 DOI: 10.1093/gbe/evab289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
The Rel/NF-κB transcription factor family has myriad roles in immunity, development, and differentiation in animals, and was considered a key innovation for animal multicellularity. Rel homology domain-containing proteins were previously hypothesized to have originated in a last common ancestor of animals and some of their closest unicellular relatives. However, key taxa were missing from previous analyses, necessitating a systematic investigation into the distribution and evolution of these proteins. Here, we address this knowledge gap by surveying taxonomically broad data from eukaryotes, with a special emphasis on lineages closely related to animals. We report an earlier origin for Rel/NF-κB proteins than previously described, in the last common ancestor of animals and fungi, and show that even in the sister group to fungi, these proteins contain elements that in animals are necessary for the subcellular regulation of Rel/NF-κB.
Collapse
Affiliation(s)
- Michelle M Leger
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Núria Ros-Rocher
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Sebastián R Najle
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Department of Genetics, Microbiology and Statistics, Institute for Research on Biodiversity, University of Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
34
|
Benz C, Ali M, Krystkowiak I, Simonetti L, Sayadi A, Mihalic F, Kliche J, Andersson E, Jemth P, Davey NE, Ivarsson Y. Proteome-scale mapping of binding sites in the unstructured regions of the human proteome. Mol Syst Biol 2022; 18:e10584. [PMID: 35044719 PMCID: PMC8769072 DOI: 10.15252/msb.202110584] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Specific protein-protein interactions are central to all processes that underlie cell physiology. Numerous studies have together identified hundreds of thousands of human protein-protein interactions. However, many interactions remain to be discovered, and low affinity, conditional, and cell type-specific interactions are likely to be disproportionately underrepresented. Here, we describe an optimized proteomic peptide-phage display library that tiles all disordered regions of the human proteome and allows the screening of ~ 1,000,000 overlapping peptides in a single binding assay. We define guidelines for processing, filtering, and ranking the results and provide PepTools, a toolkit to annotate the identified hits. We uncovered >2,000 interaction pairs for 35 known short linear motif (SLiM)-binding domains and confirmed the quality of the produced data by complementary biophysical or cell-based assays. Finally, we show how the amino acid resolution-binding site information can be used to pinpoint functionally important disease mutations and phosphorylation events in intrinsically disordered regions of the proteome. The optimized human disorderome library paired with PepTools represents a powerful pipeline for unbiased proteome-wide discovery of SLiM-based interactions.
Collapse
Affiliation(s)
- Caroline Benz
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Muhammad Ali
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | | | | | - Ahmed Sayadi
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Filip Mihalic
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Johanna Kliche
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Eva Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Per Jemth
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Norman E Davey
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Ylva Ivarsson
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
35
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
36
|
Ulengin-Talkish I, Parson MAH, Jenkins ML, Roy J, Shih AZL, St-Denis N, Gulyas G, Balla T, Gingras AC, Várnai P, Conibear E, Burke JE, Cyert MS. Palmitoylation targets the calcineurin phosphatase to the phosphatidylinositol 4-kinase complex at the plasma membrane. Nat Commun 2021; 12:6064. [PMID: 34663815 PMCID: PMC8523714 DOI: 10.1038/s41467-021-26326-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022] Open
Abstract
Calcineurin, the conserved protein phosphatase and target of immunosuppressants, is a critical mediator of Ca2+ signaling. Here, to discover calcineurin-regulated processes we examined an understudied isoform, CNAβ1. We show that unlike canonical cytosolic calcineurin, CNAβ1 localizes to the plasma membrane and Golgi due to palmitoylation of its divergent C-terminal tail, which is reversed by the ABHD17A depalmitoylase. Palmitoylation targets CNAβ1 to a distinct set of membrane-associated interactors including the phosphatidylinositol 4-kinase (PI4KA) complex containing EFR3B, PI4KA, TTC7B and FAM126A. Hydrogen-deuterium exchange reveals multiple calcineurin-PI4KA complex contacts, including a calcineurin-binding peptide motif in the disordered tail of FAM126A, which we establish as a calcineurin substrate. Calcineurin inhibitors decrease PI4P production during Gq-coupled GPCR signaling, suggesting that calcineurin dephosphorylates and promotes PI4KA complex activity. In sum, this work discovers a calcineurin-regulated signaling pathway which highlights the PI4KA complex as a regulatory target and reveals that dynamic palmitoylation confers unique localization, substrate specificity and regulation to CNAβ1.
Collapse
Affiliation(s)
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexis Z L Shih
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nicole St-Denis
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Canada
- High-Fidelity Science Communications, Summerside, PE, Canada
| | - Gergo Gulyas
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elizabeth Conibear
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Calcium signaling in intracellular protist parasites. Curr Opin Microbiol 2021; 64:33-40. [PMID: 34571430 DOI: 10.1016/j.mib.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/28/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022]
Abstract
Calcium ion (Ca2+) signaling is one of the most frequently employed mechanisms of signal transduction by eukaryotic cells, and starts with either Ca2+ release from intracellular stores or Ca2+ entry through the plasma membrane. In intracellular protist parasites Ca2+ signaling initiates a sequence of events that may facilitate their invasion of host cells, respond to environmental changes within the host, or regulate the function of their intracellular organelles. In this review we examine recent findings in Ca2+ signaling in two groups of intracellular protist parasites that have been studied in more detail, the apicomplexan and the trypanosomatid parasites.
Collapse
|
38
|
Hsu IS, Strome B, Lash E, Robbins N, Cowen LE, Moses AM. A functionally divergent intrinsically disordered region underlying the conservation of stochastic signaling. PLoS Genet 2021; 17:e1009629. [PMID: 34506483 PMCID: PMC8457507 DOI: 10.1371/journal.pgen.1009629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/22/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Stochastic signaling dynamics expand living cells' information processing capabilities. An increasing number of studies report that regulators encode information in their pulsatile dynamics. The evolutionary mechanisms that lead to complex signaling dynamics remain uncharacterized, perhaps because key interactions of signaling proteins are encoded in intrinsically disordered regions (IDRs), whose evolution is difficult to analyze. Here we focused on the IDR that controls the stochastic pulsing dynamics of Crz1, a transcription factor in fungi downstream of the widely conserved calcium signaling pathway. We find that Crz1 IDRs from anciently diverged fungi can all respond transiently to calcium stress; however, only Crz1 IDRs from the Saccharomyces clade support pulsatility, encode extra information, and rescue fitness in competition assays, while the Crz1 IDRs from distantly related fungi do none of the three. On the other hand, we find that Crz1 pulsing is conserved in the distantly related fungi, consistent with the evolutionary model of stabilizing selection on the signaling phenotype. Further, we show that a calcineurin docking site in a specific part of the IDRs appears to be sufficient for pulsing and show evidence for a beneficial increase in the relative calcineurin affinity of this docking site. We propose that evolutionary flexibility of functionally divergent IDRs underlies the conservation of stochastic signaling by stabilizing selection.
Collapse
Affiliation(s)
- Ian S. Hsu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Bob Strome
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Emma Lash
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alan M. Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
39
|
SPATA33 localizes calcineurin to the mitochondria and regulates sperm motility in mice. Proc Natl Acad Sci U S A 2021; 118:2106673118. [PMID: 34446558 PMCID: PMC8536318 DOI: 10.1073/pnas.2106673118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Calcineurin is a target of immunosuppressive drugs such as cyclosporine A and tacrolimus. In the immune system, calcineurin interacts with NFAT via the PxIxIT motif to activate T cells. In contrast, little is known about the proteins that interact with a testis-enriched calcineurin that is essential for sperm motility and male fertility. Here, we discovered that calcineurin interacts with SPATA33 via a PQIIIT sequence in the testis. Further analyses reveal that SPATA33 plays critical roles in sperm motility and male fertility. Our finding sheds new light on the molecular mechanisms of sperm motility regulation and the etiology of human male fertility. Furthermore, it may help us not only understand reproductive toxicities but also develop nonhormonal male contraceptives. Calcineurin is a calcium-dependent phosphatase that plays roles in a variety of biological processes including immune responses. In spermatozoa, there is a testis-enriched calcineurin composed of PPP3CC and PPP3R2 (sperm calcineurin) that is essential for sperm motility and male fertility. Because sperm calcineurin has been proposed as a target for reversible male contraceptives, identifying proteins that interact with sperm calcineurin widens the choice for developing specific inhibitors. Here, by screening the calcineurin-interacting PxIxIT consensus motif in silico and analyzing the function of candidate proteins through the generation of gene-modified mice, we discovered that SPATA33 interacts with sperm calcineurin via a PQIIIT sequence. Spata33 knockout mice exhibit reduced sperm motility because of an inflexible midpiece, leading to impaired male fertility, which phenocopies Ppp3cc and Ppp3r2 knockout mice. Further analysis reveals that sperm calcineurin disappears from the mitochondria in the Spata33 knockout testis. In addition, immunoprecipitation analysis indicates that sperm calcineurin interacts with not only SPATA33 but also the mitochondrial protein VDAC2. These results indicate that SPATA33 localizes calcineurin to the mitochondria and regulates sperm motility.
Collapse
|
40
|
Lindorff-Larsen K, Kragelund BB. On the potential of machine learning to examine the relationship between sequence, structure, dynamics and function of intrinsically disordered proteins. J Mol Biol 2021; 433:167196. [PMID: 34390736 DOI: 10.1016/j.jmb.2021.167196] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) constitute a broad set of proteins with few uniting and many diverging properties. IDPs-and intrinsically disordered regions (IDRs) interspersed between folded domains-are generally characterized as having no persistent tertiary structure; instead they interconvert between a large number of different and often expanded structures. IDPs and IDRs are involved in an enormously wide range of biological functions and reveal novel mechanisms of interactions, and while they defy the common structure-function paradigm of folded proteins, their structural preferences and dynamics are important for their function. We here discuss open questions in the field of IDPs and IDRs, focusing on areas where machine learning and other computational methods play a role. We discuss computational methods aimed to predict transiently formed local and long-range structure, including methods for integrative structural biology. We discuss the many different ways in which IDPs and IDRs can bind to other molecules, both via short linear motifs, as well as in the formation of larger dynamic complexes such as biomolecular condensates. We discuss how experiments are providing insight into such complexes and may enable more accurate predictions. Finally, we discuss the role of IDPs in disease and how new methods are needed to interpret the mechanistic effects of genomic variants in IDPs.
Collapse
Affiliation(s)
- Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen. Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen. Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
41
|
Barbar E, Estelle A. A tail goes viral by forming an anchor and a tether. Structure 2021; 29:783-786. [PMID: 34358464 DOI: 10.1016/j.str.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this issue of Structure, Aiyer et al. (2021) report NMR structures of BET:MLV IN complexes, highlighting a role for the disordered tail domain of MLV IN in viral integration. These studies expand the understanding of molecular recognition polymorphism in BET complexes and offer insight into cancer and antiviral therapeutics.
Collapse
Affiliation(s)
- Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| | - Aidan Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
42
|
NFAT transcription factors are essential and redundant actors for leukemia initiating potential in T-cell acute lymphoblastic leukemia. PLoS One 2021; 16:e0254184. [PMID: 34234374 PMCID: PMC8263285 DOI: 10.1371/journal.pone.0254184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy with few available targeted therapies. We previously reported that the phosphatase calcineurin (Cn) is required for LIC (leukemia Initiating Capacity) potential of T-ALL pointing to Cn as an interesting therapeutic target. Calcineurin inhibitors have however unwanted side effect. NFAT transcription factors play crucial roles downstream of calcineurin during thymocyte development, T cell differentiation, activation and anergy. Here we elucidate NFAT functional relevance in T-ALL. Using murine T-ALL models in which Nfat genes can be inactivated either singly or in combination, we show that NFATs are required for T-ALL LIC potential and essential to survival, proliferation and migration of T-ALL cells. We also demonstrate that Nfat genes are functionally redundant in T-ALL and identified a node of genes commonly deregulated upon Cn or NFAT inactivation, which may serve as future candidate targets for T-ALL.
Collapse
|
43
|
Evolutionary crossroads of cell signaling: PP1 and PP2A substrate sites in intrinsically disordered regions. Biochem Soc Trans 2021; 49:1065-1074. [PMID: 34100859 PMCID: PMC8286827 DOI: 10.1042/bst20200175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Phosphorylation of the hydroxyl group of the amino acids serine and threonine is among the most prevalent post-translational modifications in mammalian cells. Phospho-serine (pSer) and -threonine (pThr) represent a central cornerstone in the cell's toolbox for adaptation to signal input. The true power for the fast modulation of the regulatory pSer/pThr sites arises from the timely attachment, binding and removal of the phosphate. The phosphorylation of serine and threonine by kinases and the binding of pSer/pThr by phosphorylation-dependent scaffold proteins is largely determined by the sequence motif surrounding the phosphorylation site (p-site). The removal of the phosphate is regulated by pSer/pThr-specific phosphatases with the two most prominent ones being PP1 and PP2A. For this family, recent advances brought forward a more complex mechanism for p-site selection. The interaction of regulatory proteins with the substrate protein constitutes a first layer for substrate recognition, but also interactions of the catalytic subunit with the amino acids in close proximity to pSer/pThr contribute to p-site selection. Here, we review the current pieces of evidence for this multi-layered, complex mechanism and hypothesize that, depending on the degree of higher structure surrounding the substrate site, recognition is more strongly influenced by regulatory subunits away from the active site for structured substrate regions, whereas the motif context is of strong relevance with p-sites in disordered regions. The latter makes these amino acid sequences crossroads for signaling and motif strength between kinases, pSer/pThr-binding proteins and phosphatases.
Collapse
|
44
|
Morgan AJ, Davis LC, Galione A. Choreographing endo-lysosomal Ca 2+ throughout the life of a phagosome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119040. [PMID: 33872669 DOI: 10.1016/j.bbamcr.2021.119040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
The emergence of endo-lysosomes as ubiquitous Ca2+ stores with their unique cohort of channels has resulted in their being implicated in a growing number of processes in an ever-increasing number of cell types. The architectural and regulatory constraints of these acidic Ca2+ stores distinguishes them from other larger Ca2+ sources such as the ER and influx across the plasma membrane. In view of recent advances in the understanding of the modes of operation, we discuss phagocytosis as a template for how endo-lysosomal Ca2+ signals (generated via TPC and TRPML channels) can be integrated in multiple sophisticated ways into biological processes. Phagocytosis illustrates how different endo-lysosomal Ca2+ signals drive different phases of a process, and how these can be altered by disease or infection.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK.
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK.
| |
Collapse
|
45
|
Li H, Hogan PG. Calcineurin: A star is reborn. Cell Calcium 2021; 94:102324. [PMID: 33482473 DOI: 10.1016/j.ceca.2020.102324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
The protein phosphatase calcineurin has long been familiar to the calcium community, but the definition of its physiological substrates has been far from complete. A new study rectifies this deficiency and sets the stage for new insights into the role of calcineurin in diverse cellular processes.
Collapse
Affiliation(s)
- Huiming Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Patrick G Hogan
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Moores Cancer Center, University of California-San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
46
|
Role of calcineurin biosignaling in cell secretion and the possible regulatory mechanisms. Saudi J Biol Sci 2021; 28:116-124. [PMID: 33424288 PMCID: PMC7783665 DOI: 10.1016/j.sjbs.2020.08.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/02/2020] [Accepted: 08/30/2020] [Indexed: 11/22/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) and calcium ions (Ca2+) are two chemical molecules that play a central role in the stimulus-dependent secretion processes within cells. Ca2+ acts as the basal signaling molecule responsible to initiate cell secretion. cAMP primarily acts as an intracellular second messenger in a myriad of cellular processes by activating cAMP-dependent protein kinases through association with such kinases in order to mediate post-translational phosphorylation of those protein targets. Put succinctly, both Ca2+ and cAMP act by associating or activating other proteins to ensure successful secretion. Calcineurin is one such protein regulated by Ca2+; its action depends on the intracellular levels of Ca2+. Being a phosphatase, calcineurin dephosphorylate and other proteins, as is the case with most other phosphatases, such as protein phosphatase 2A (PP2A), PP2C, and protein phosphatase-1 (PP1), will likely be activated by phosphorylation. Via this process, calcineurin is able to affect different intracellular signaling with clinical importance, some of which has been the basis for development of different calcineurin inhibitors. In this review, the cAMP-dependent calcineurin bio-signaling, protein-protein interactions and their physiological implications as well as regulatory signaling within the context of cellular secretion are explored.
Collapse
|
47
|
Roy J, Cyert MS. Cell Biology: Deciphering the ABCs of SLiMs in G1-CDK Signaling. Curr Biol 2020; 30:R1382-R1385. [PMID: 33202241 PMCID: PMC10763628 DOI: 10.1016/j.cub.2020.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new study uses an elegant in vivo assay to comprehensively characterize the LP docking motif, which determines G1-CDK substrate specificity in fungi. The authors show that LP-cyclin docking strength determines the timing of Sic1 degradation, a key cell cycle event.
Collapse
Affiliation(s)
- Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
48
|
Cho U, Chen JK. Lanthanide-Based Optical Probes of Biological Systems. Cell Chem Biol 2020; 27:921-936. [PMID: 32735780 DOI: 10.1016/j.chembiol.2020.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
The unique photophysical properties of lanthanides, such as europium, terbium, and ytterbium, make them versatile molecular probes of biological systems. In particular, their long-lived photoluminescence, narrow bandwidth emissions, and large Stokes shifts enable experiments that are infeasible with organic fluorophores and fluorescent proteins. The ability of these metal ions to undergo luminescence resonance energy transfer, and photon upconversion further expands the capabilities of lanthanide probes. In this review, we describe recent advances in the design of lanthanide luminophores and their application in biological research. We also summarize the latest detection systems that have been developed to fully exploit the optical properties of lanthanide luminophores. We conclude with a discussion of remaining challenges and new frontiers in lanthanide technologies. The unprecedented levels of sensitivity and multiplexing afforded by rare-earth elements illustrate how chemistry can enable new approaches in biology.
Collapse
Affiliation(s)
- Ukrae Cho
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|