1
|
Davidson IF, Barth R, Nagasaka K, Tang W, Wutz G, Horn S, Janissen R, Stocsits RR, Chlosta E, Bauer BW, Dekker C, Peters JM. Cohesin supercoils DNA during loop extrusion. Cell Rep 2025; 44:115856. [PMID: 40516048 DOI: 10.1016/j.celrep.2025.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/19/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Cohesin extrudes genomic DNA into loops that promote chromatin assembly, gene regulation, and gene recombination. Loop extrusion depends on large-scale conformational changes in cohesin, but how these translocate DNA is poorly understood. Here, we provide evidence that cohesin negatively supercoils DNA during loop extrusion. Supercoiling requires the engagement of cohesin's ATPase heads, DNA clamping by these heads, and a DNA-binding site on cohesin's hinge, indicating that cohesin twists DNA when constraining it between the hinge and the clamp. A cohesin mutant defective in negative supercoiling forms shorter loops in cells, and a similar, although weaker, phenotype is observed after the depletion of topoisomerase I. These results suggest that supercoiling is an integral part of the loop-extrusion mechanism and that relaxation of supercoiled DNA is required for cohesin-mediated loop extrusion and genome architecture.
Collapse
Affiliation(s)
- Iain F Davidson
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Kota Nagasaka
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Sabrina Horn
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Roman R Stocsits
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Emilia Chlosta
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Benedikt W Bauer
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
2
|
Bürmann F, Clifton B, Koekemoer S, Wilkinson OJ, Kimanius D, Dillingham MS, Löwe J. Mechanism of DNA capture by the MukBEF SMC complex and its inhibition by a viral DNA mimic. Cell 2025; 188:2465-2479.e14. [PMID: 40168993 DOI: 10.1016/j.cell.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025]
Abstract
Ring-like structural maintenance of chromosome (SMC) complexes are crucial for genome organization and operate through mechanisms of DNA entrapment and loop extrusion. Here, we explore the DNA loading process of the bacterial SMC complex MukBEF. Using cryoelectron microscopy (cryo-EM), we demonstrate that ATP binding opens one of MukBEF's three potential DNA entry gates, exposing a DNA capture site that positions DNA at the open neck gate. We discover that the gp5.9 protein of bacteriophage T7 blocks this capture site by DNA mimicry, thereby preventing DNA loading and inactivating MukBEF. We propose a comprehensive and unidirectional loading mechanism in which DNA is first captured at the complex's periphery and then ingested through the DNA entry gate, powered by a single cycle of ATP hydrolysis. These findings illuminate a fundamental aspect of how ubiquitous DNA organizers are primed for genome maintenance and demonstrate how this process can be disrupted by viruses.
Collapse
Affiliation(s)
- Frank Bürmann
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK; University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK.
| | - Bryony Clifton
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Sophie Koekemoer
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Oliver J Wilkinson
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Dari Kimanius
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK; CZ Imaging Institute, 3400 Bridge Parkway, Redwood City, CA 94065, USA
| | - Mark S Dillingham
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
3
|
Haudiquet M, Chakravarti A, Zhang Z, Ramirez JL, Herrero Del Valle A, Olinares PDB, Lavenir R, Ahmed MA, de la Cruz MJ, Chait BT, Sternberg SH, Bernheim A, Patel D. Structural basis for Lamassu-based antiviral immunity and its evolution from DNA repair machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646746. [PMID: 40236079 PMCID: PMC11996555 DOI: 10.1101/2025.04.02.646746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Bacterial immune systems exhibit remarkable diversity and modularity, as a consequence of the continuous selective pressures imposed by phage predation. Despite recent mechanistic advances, the evolutionary origins of many antiphage immune systems remain elusive, especially for those that encode homologs of the Structural Maintenance of Chromosomes (SMC) superfamily, which are essential for chromosome maintenance and DNA repair across domains of life. Here, we elucidate the structural basis and evolutionary emergence of Lamassu, a bacterial immune system family featuring diverse effectors but a core conserved SMC-like sensor. Using cryo-EM, we determined structures of the Vibrio cholerae Lamassu complex in both apo- and dsDNA-bound states, revealing unexpected stoichiometry and topological architectures. We further demonstrate how Lamassu specifically senses dsDNA in vitro and phage replication origins in vivo , thereby triggering the formation of LmuA tetramers that activate the Cap4 nuclease domain. Our findings reveal that Lamassu evolved via exaptation of the bacterial Rad50-Mre11 DNA repair system to form a compact, modular sensor for viral replication, exemplifying how cellular machinery can be co-opted for novel immune functions.
Collapse
|
4
|
Ponndara S, Kortebi M, Boccard F, Bury‐Moné S, Lioy VS. Principles of bacterial genome organization, a conformational point of view. Mol Microbiol 2025; 123:195-205. [PMID: 38922728 PMCID: PMC11894783 DOI: 10.1111/mmi.15290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Bacterial chromosomes are large molecules that need to be highly compacted to fit inside the cells. Chromosome compaction must facilitate and maintain key biological processes such as gene expression and DNA transactions (replication, recombination, repair, and segregation). Chromosome and chromatin 3D-organization in bacteria has been a puzzle for decades. Chromosome conformation capture coupled to deep sequencing (Hi-C) in combination with other "omics" approaches has allowed dissection of the structural layers that shape bacterial chromosome organization, from DNA topology to global chromosome architecture. Here we review the latest findings using Hi-C and discuss the main features of bacterial genome folding.
Collapse
Affiliation(s)
- Sokrich Ponndara
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Mounia Kortebi
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Frédéric Boccard
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Stéphanie Bury‐Moné
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Virginia S. Lioy
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| |
Collapse
|
5
|
Wang B, Said N, Hilal T, Finazzo M, Wahl MC, Artsimovitch I. Nucleotide-induced hyper-oligomerization inactivates transcription termination factor ρ. Nat Commun 2025; 16:1653. [PMID: 39952913 PMCID: PMC11829017 DOI: 10.1038/s41467-025-56824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
Bacterial RNA helicase ρ is a genome sentinel that terminates the synthesis of damaged and junk RNAs that are not translated by the ribosome. It is unclear how ρ is regulated during dormancy or stress, when translation is inefficient and RNAs are vulnerable to ρ-mediated release. We use cryogenic electron microscopy, biochemical, and genetic approaches to show that substitutions of residues in the connector between two ρ domains or ADP promote the formation of extended Escherichia coli ρ filaments. By contrast, (p)ppGpp induces the formation of transient ρ dodecamers. Our results demonstrate that ADP and (p)ppGpp nucleotides bound at subunit interfaces inhibit ρ ring closure that underpins the hexamer activation, thus favoring the assembly of inactive higher-order oligomers. Connector substitutions and antibiotics that inhibit RNA and protein syntheses trigger ρ aggregation in the cell. These and other recent data implicate aggregation as a widespread strategy to tune ρ activity.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Nelly Said
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, Berlin, Germany
| | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Fabeckstr. 36a, Berlin, Germany
| | - Mark Finazzo
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, Berlin, Germany.
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, Berlin, Germany.
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Borde C, Bruno L, Espéli O. Untangling bacterial DNA topoisomerases functions. Biochem Soc Trans 2024; 52:2321-2331. [PMID: 39508659 DOI: 10.1042/bst20240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
Topoisomerases are the main enzymes capable of resolving the topological constraints imposed by DNA transactions such as transcription or replication. All bacteria possess topoisomerases of different types. Although bacteria with circular replicons should encounter similar DNA topology issues, the distribution of topoisomerases varies from one bacterium to another, suggesting polymorphic functioning. Recently, several proteins restricting, enhancing or modifying the activity of topoisomerases were discovered, opening the way to a new area of understanding DNA topology management during the bacterial cell cycle. In this review, we discuss the distribution of topoisomerases across the bacterial phylum and current knowledge on the interplay among the different topoisomerases to maintain topological homeostasis.
Collapse
Affiliation(s)
- Céline Borde
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Lisa Bruno
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
7
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024; 12:eesp00012022. [PMID: 38864557 PMCID: PMC11636183 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K. Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Rhind N. In through the out door: A loop-binding-first model for topological cohesin loading. Bioessays 2024; 46:e2400120. [PMID: 39159466 PMCID: PMC11427176 DOI: 10.1002/bies.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Cohesin is a ring-shaped complex that is loaded on DNA in two different conformations. In one conformation, it forms loops to organize the interphase genome; in the other, it topologically encircles sibling chromosomes to facilitate homologous recombination and to establish the cohesion that is required for orderly segregation during mitosis. How, and even if, these two loading conformation are related is unclear. Here, I propose that loop binding is a required first step for topological binding. This loop-binding-first model integrates the known information about the two loading mechanisms, explains genetic requirements for the two and explains how topological loading evolved from loop binding.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
9
|
Bułacz H, Hołówka J, Wójcik W, Zakrzewska-Czerwińska J. MksB is a novel mycobacterial condensin that orchestrates spatiotemporal positioning of replication machinery. Sci Rep 2024; 14:19026. [PMID: 39152186 PMCID: PMC11329512 DOI: 10.1038/s41598-024-70054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Condensins play important roles in maintaining bacterial chromatin integrity. In mycobacteria, three types of condensins have been characterized: a homolog of SMC and two MksB-like proteins, the recently identified MksB and EptC. Previous studies suggest that EptC contributes to defending against foreign DNA, while SMC and MksB may play roles in chromosome organization. Here, we report for the first time that the condensins, SMC and MksB, are involved in various DNA transactions during the cell cycle of Mycobacterium smegmatis (currently named Mycolicibacterium smegmatis). SMC appears to be required during the last steps of the cell cycle, where it contributes to sister chromosome separation. Intriguingly, in contrast to other bacteria, mycobacterial MksB follows replication forks during chromosome replication and hence may be involved in organizing newly replicated DNA.
Collapse
Affiliation(s)
- Hanna Bułacz
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Joanna Hołówka
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland.
| | - Wiktoria Wójcik
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
10
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
11
|
Roisné-Hamelin F, Liu HW, Taschner M, Li Y, Gruber S. Structural basis for plasmid restriction by SMC JET nuclease. Mol Cell 2024; 84:883-896.e7. [PMID: 38309275 DOI: 10.1016/j.molcel.2024.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
DNA loop-extruding SMC complexes play crucial roles in chromosome folding and DNA immunity. Prokaryotic SMC Wadjet (JET) complexes limit the spread of plasmids through DNA cleavage, yet the mechanisms for plasmid recognition are unresolved. We show that artificial DNA circularization renders linear DNA susceptible to JET nuclease cleavage. Unlike free DNA, JET cleaves immobilized plasmid DNA at a specific site, the plasmid-anchoring point, showing that the anchor hinders DNA extrusion but not DNA cleavage. Structures of plasmid-bound JetABC reveal two presumably stalled SMC motor units that are drastically rearranged from the resting state, together entrapping a U-shaped DNA segment, which is further converted to kinked V-shaped cleavage substrate by JetD nuclease binding. Our findings uncover mechanical bending of residual unextruded DNA as molecular signature for plasmid recognition and non-self DNA elimination. We moreover elucidate key elements of SMC loop extrusion, including the motor direction and the structure of a DNA-holding state.
Collapse
Affiliation(s)
- Florian Roisné-Hamelin
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Hon Wing Liu
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Michael Taschner
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Yan Li
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland.
| |
Collapse
|
12
|
Pradhan B, Deep A, König J, Baaske MD, Corbett KD, Kim E. Loop extrusion-mediated plasmid DNA cleavage by the bacterial SMC Wadjet complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580791. [PMID: 38405785 PMCID: PMC10889018 DOI: 10.1101/2024.02.17.580791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Structural maintenance of chromosomes (SMC) protein complexes play pivotal roles in genome organization and maintenance across all domains of life. In prokaryotes, SMC family Wadjet complexes structurally resemble the widespread MukBEF genome-organizing complexes but serve a defensive role by inhibiting plasmid transformation. We previously showed that Wadjet specifically cleaves circular DNA; however, the molecular mechanism underlying DNA substrate recognition remains unclear. Here, we use in vitro single-molecule imaging to directly visualize DNA loop extrusion and plasmid cleavage by Wadjet. We find that Wadjet is a symmetric DNA loop extruder that simultaneously reels in DNA from both sides of a growing loop and that this activity requires a dimeric JetABC supercomplex containing two dimers of the JetC motor subunit. On surface-anchored plasmid DNAs, Wadjet extrudes the full length of a 44 kilobase pair plasmid, stalls, and then cleaves DNA. Our findings reveal the role of loop extrusion in the specific recognition and elimination of plasmids by Wadjet, and establish loop extrusion as an evolutionarily conserved mechanism among SMC complexes across kingdoms of life.
Collapse
Affiliation(s)
- Biswajit Pradhan
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA, USA
| | - Jessica König
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | | | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla CA, USA
| | - Eugene Kim
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Seba M, Boccard F, Duigou S. Activity of MukBEF for chromosome management in E. coli and its inhibition by MatP. eLife 2024; 12:RP91185. [PMID: 38315099 PMCID: PMC10945525 DOI: 10.7554/elife.91185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes share conserved structures and serve a common role in maintaining chromosome architecture. In the bacterium Escherichia coli, the SMC complex MukBEF is necessary for rapid growth and the accurate segregation and positioning of the chromosome, although the specific molecular mechanisms involved are still unknown. Here, we used a number of in vivo assays to reveal how MukBEF controls chromosome conformation and how the MatP/matS system prevents MukBEF activity. Our results indicate that the loading of MukBEF occurs preferentially on newly replicated DNA, at multiple loci on the chromosome where it can promote long-range contacts in cis even though MukBEF can promote long-range contacts in the absence of replication. Using Hi-C and ChIP-seq analyses in strains with rearranged chromosomes, the prevention of MukBEF activity increases with the number of matS sites and this effect likely results from the unloading of MukBEF by MatP. Altogether, our results reveal how MukBEF operates to control chromosome folding and segregation in E. coli.
Collapse
Affiliation(s)
- Mohammed Seba
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Frederic Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Stéphane Duigou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
15
|
Moon KW, Ryu JK. Current working models of SMC-driven DNA-loop extrusion. Biochem Soc Trans 2023; 51:1801-1810. [PMID: 37767565 DOI: 10.1042/bst20220898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Structural maintenance of chromosome (SMC) proteins play a key roles in the chromosome organization by condensing two meters of DNA into cell-sized structures considered as the SMC protein extrudes DNA loop. Recent sequencing-based high-throughput chromosome conformation capture technique (Hi-C) and single-molecule experiments have provided direct evidence of DNA-loop extrusion. However, the molecular mechanism by which SMCs extrude a DNA loop is still under debate. Here, we review DNA-loop extrusion studies with single-molecule assays and introduce recent structural studies of how the ATP-hydrolysis cycle is coupled to the conformational changes of SMCs for DNA-loop extrusion. In addition, we explain the conservation of the DNA-binding sites that are vital for dynamic DNA-loop extrusion by comparing Cryo-EM structures of SMC complexes. Based on this information, we compare and discuss four compelling working models that explain how the SMC complex extrudes a DNA loop.
Collapse
Affiliation(s)
- Kyoung-Wook Moon
- Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Je-Kyung Ryu
- Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
16
|
Liu HW, Roisné-Hamelin F, Gruber S. SMC-based immunity against extrachromosomal DNA elements. Biochem Soc Trans 2023; 51:1571-1583. [PMID: 37584323 PMCID: PMC10586767 DOI: 10.1042/bst20221395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
SMC and SMC-like complexes promote chromosome folding and genome maintenance in all domains of life. Recently, they were also recognized as factors in cellular immunity against foreign DNA. In bacteria and archaea, Wadjet and Lamassu are anti-plasmid/phage defence systems, while Smc5/6 and Rad50 complexes play a role in anti-viral immunity in humans. This raises an intriguing paradox - how can the same, or closely related, complexes on one hand secure the integrity and maintenance of chromosomal DNA, while on the other recognize and restrict extrachromosomal DNA? In this minireview, we will briefly describe the latest understanding of each of these complexes in immunity including speculations on how principles of SMC(-like) function may explain how the systems recognize linear or circular forms of invading DNA.
Collapse
Affiliation(s)
- Hon Wing Liu
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Florian Roisné-Hamelin
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Wang B, Said N, Hilal T, Finazzo M, Wahl MC, Artsimovitch I. Transcription termination factor ρ polymerizes under stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553922. [PMID: 37645988 PMCID: PMC10462130 DOI: 10.1101/2023.08.18.553922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Bacterial RNA helicase ρ is a genome sentinel that terminates synthesis of damaged and junk RNAs that are not translated by the ribosome. Co-transcriptional RNA surveillance by ρ is essential for quality control of the transcriptome during optimal growth. However, it is unclear how bacteria protect their RNAs from overzealous ρ during dormancy or stress, conditions common in natural habitats. Here we used cryogenic electron microscopy, biochemical, and genetic approaches to show that residue substitutions, ADP, or ppGpp promote hyper-oligomerization of Escherichia coli ρ. Our results demonstrate that nucleotides bound at subunit interfaces control ρ switching from active hexamers to inactive higher-order oligomers and extended filaments. Polymers formed upon exposure to antibiotics or ppGpp disassemble when stress is relieved, thereby directly linking termination activity to cellular physiology. Inactivation of ρ through hyper-oligomerization is a regulatory strategy shared by RNA polymerases, ribosomes, and metabolic enzymes across all life.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Nelly Said
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Fabeckstr. 36a, 14195 Berlin, Germany
| | - Mark Finazzo
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Markus C. Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Lelkes E, Jemelková J, Holá M, Štefanovie B, Kolesár P, Vágnerová R, Dvořák Tomaštíková E, Pecinka A, Angelis KJ, Paleček JJ. Characterization of the conserved features of the NSE6 subunit of the Physcomitrium patens SMC5/6 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1084-1099. [PMID: 37191775 DOI: 10.1111/tpj.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes are molecular machines ensuring chromatin organization at higher levels. They play direct roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of long-armed SMC, kleisin, and kleisin-associated subunits. Additional factors, like NSE6 within SMC5/6, bind to SMC core complexes and regulate their activities. In the human HsNSE6/SLF2, we recently identified a new CANIN domain. Here we tracked down its sequence homology to lower plants, selected the bryophyte Physcomitrium patens, and analyzed PpNSE6 protein-protein interactions to explore its conservation in detail. We identified a previously unrecognized core sequence motif conserved from yeasts to humans within the NSE6 CANIN domain. This motif mediates the interaction between NSE6 and its NSE5 partner in yeasts and plants. In addition, the CANIN domain and its preceding PpNSE6 sequences bind both PpSMC5 and PpSMC6 arms. Interestingly, we mapped the PpNSE6-binding site at the PpSMC5 arm right next to the PpNSE2-binding surface. The position of NSE6 at SMC arms suggests its role in the regulation of SMC5/6 dynamics. Consistent with the regulatory role of NSE6 subunits, Ppnse6 mutant lines were viable and sensitive to the DNA-damaging drug bleomycin and lost a large portion of rDNA copies. These moss mutants also exhibited reduced growth and developmental aberrations. Altogether, our data showed the conserved function of the NSE6 subunit and architecture of the SMC5/6 complex across species.
Collapse
Affiliation(s)
- Edit Lelkes
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jitka Jemelková
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Marcela Holá
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Barbora Štefanovie
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Peter Kolesár
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Radka Vágnerová
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Jan J Paleček
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| |
Collapse
|
19
|
Bürmann F, Löwe J. Structural biology of SMC complexes across the tree of life. Curr Opin Struct Biol 2023; 80:102598. [PMID: 37104976 PMCID: PMC10512200 DOI: 10.1016/j.sbi.2023.102598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes guard and organize the three-dimensional structure of chromosomal DNA across the tree of life. Many SMC functions can be explained by an inherent motor activity that extrudes large DNA loops while the complexes move along their substrate. Here, we review recent structural insights into the architecture and conservation of these molecular machines, their interaction with DNA, and the conformational changes that are linked to their ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Frank Bürmann
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
20
|
Leonard AC. Recollections of a Helmstetter Disciple. Life (Basel) 2023; 13:life13051114. [PMID: 37240759 DOI: 10.3390/life13051114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Nearly fifty years ago, it became possible to construct E. coli minichromosomes using recombinant DNA technology. These very small replicons, comprising the unique replication origin of the chromosome oriC coupled to a drug resistance marker, provided new opportunities to study the regulation of bacterial chromosome replication, were key to obtaining the nucleotide sequence information encoded into oriC and were essential for the development of a ground-breaking in vitro replication system. However, true authenticity of the minichromosome model system required that they replicate during the cell cycle with chromosome-like timing specificity. I was fortunate enough to have the opportunity to construct E. coli minichromosomes in the laboratory of Charles Helmstetter and, for the first time, measure minichromosome cell cycle regulation. In this review, I discuss the evolution of this project along with some additional studies from that time related to the DNA topology and segregation properties of minichromosomes. Despite the significant passage of time, it is clear that large gaps in our understanding of oriC regulation still remain. I discuss some specific topics that continue to be worthy of further study.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32952, USA
| |
Collapse
|
21
|
Sutormin D, Galivondzhyan A, Gafurov A, Severinov K. Single-nucleotide resolution detection of Topo IV cleavage activity in the Escherichia coli genome with Topo-Seq. Front Microbiol 2023; 14:1160736. [PMID: 37089538 PMCID: PMC10117906 DOI: 10.3389/fmicb.2023.1160736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Topoisomerase IV (Topo IV) is the main decatenation enzyme in Escherichia coli; it removes catenation links that are formed during DNA replication. Topo IV binding and cleavage sites were previously identified in the E. coli genome with ChIP-Seq and NorfIP. Here, we used a more sensitive, single-nucleotide resolution Topo-Seq procedure to identify Topo IV cleavage sites (TCSs) genome-wide. We detected thousands of TCSs scattered in the bacterial genome. The determined cleavage motif of Topo IV contained previously known cleavage determinants (−4G/+8C, −2A/+6 T, −1 T/+5A) and additional, not observed previously, positions −7C/+11G and −6C/+10G. TCSs were depleted in the Ter macrodomain except for two exceptionally strong non-canonical cleavage sites located in 33 and 38 bp from the XerC-box of the dif-site. Topo IV cleavage activity was increased in Left and Right macrodomains flanking the Ter macrodomain and was especially high in the 50–60 kb region containing the oriC origin of replication. Topo IV enrichment was also increased downstream of highly active transcription units, indicating that the enzyme is involved in relaxation of transcription-induced positive supercoiling.
Collapse
Affiliation(s)
- Dmitry Sutormin
- Skolkovo Institute of Science and Technology, Moscow, Russia
- *Correspondence: Dmitry Sutormin,
| | | | - Azamat Gafurov
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Konstantin Severinov,
| |
Collapse
|
22
|
Taschner M, Gruber S. DNA segment capture by Smc5/6 holocomplexes. Nat Struct Mol Biol 2023; 30:619-628. [PMID: 37012407 DOI: 10.1038/s41594-023-00956-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
Three distinct structural maintenance of chromosomes (SMC) complexes facilitate chromosome folding and segregation in eukaryotes, presumably by DNA loop extrusion. How SMCs interact with DNA to extrude loops is not well understood. Among the SMC complexes, Smc5/6 has dedicated roles in DNA repair and preventing a buildup of aberrant DNA junctions. In the present study, we describe the reconstitution of ATP-dependent DNA loading by yeast Smc5/6 rings. Loading strictly requires the Nse5/6 subcomplex which opens the kleisin neck gate. We show that plasmid molecules are topologically entrapped in the kleisin and two SMC subcompartments, but not in the full SMC compartment. This is explained by the SMC compartment holding a looped DNA segment and by kleisin locking it in place when passing between the two flanks of the loop for neck-gate closure. Related segment capture events may provide the power stroke in subsequent DNA extrusion steps, possibly also in other SMC complexes, thus providing a unifying principle for DNA loading and extrusion.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
23
|
Mahrik L, Stefanovie B, Maresova A, Princova J, Kolesar P, Lelkes E, Faux C, Helmlinger D, Prevorovsky M, Palecek JJ. The SAGA histone acetyltransferase module targets SMC5/6 to specific genes. Epigenetics Chromatin 2023; 16:6. [PMID: 36793083 PMCID: PMC9933293 DOI: 10.1186/s13072-023-00480-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Structural Maintenance of Chromosomes (SMC) complexes are molecular machines driving chromatin organization at higher levels. In eukaryotes, three SMC complexes (cohesin, condensin and SMC5/6) play key roles in cohesion, condensation, replication, transcription and DNA repair. Their physical binding to DNA requires accessible chromatin. RESULTS We performed a genetic screen in fission yeast to identify novel factors required for SMC5/6 binding to DNA. We identified 79 genes of which histone acetyltransferases (HATs) were the most represented. Genetic and phenotypic analyses suggested a particularly strong functional relationship between the SMC5/6 and SAGA complexes. Furthermore, several SMC5/6 subunits physically interacted with SAGA HAT module components Gcn5 and Ada2. As Gcn5-dependent acetylation facilitates the accessibility of chromatin to DNA-repair proteins, we first analysed the formation of DNA-damage-induced SMC5/6 foci in the Δgcn5 mutant. The SMC5/6 foci formed normally in Δgcn5, suggesting SAGA-independent SMC5/6 localization to DNA-damaged sites. Next, we used Nse4-FLAG chromatin-immunoprecipitation (ChIP-seq) analysis in unchallenged cells to assess SMC5/6 distribution. A significant portion of SMC5/6 accumulated within gene regions in wild-type cells, which was reduced in Δgcn5 and Δada2 mutants. The drop in SMC5/6 levels was also observed in gcn5-E191Q acetyltransferase-dead mutant. CONCLUSION Our data show genetic and physical interactions between SMC5/6 and SAGA complexes. The ChIP-seq analysis suggests that SAGA HAT module targets SMC5/6 to specific gene regions and facilitates their accessibility for SMC5/6 loading.
Collapse
Affiliation(s)
- L Mahrik
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - B Stefanovie
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - A Maresova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12800, Prague, Czech Republic
| | - J Princova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12800, Prague, Czech Republic
| | - P Kolesar
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - E Lelkes
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - C Faux
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier Cedex 05, France
| | - D Helmlinger
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier Cedex 05, France
| | - M Prevorovsky
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12800, Prague, Czech Republic.
| | - J J Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
24
|
Martínez‐García B, Dyson S, Segura J, Ayats A, Cutts EE, Gutierrez‐Escribano P, Aragón L, Roca J. Condensin pinches a short negatively supercoiled DNA loop during each round of ATP usage. EMBO J 2023; 42:e111913. [PMID: 36533296 PMCID: PMC9890231 DOI: 10.15252/embj.2022111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/23/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Condensin, an SMC (structural maintenance of chromosomes) protein complex, extrudes DNA loops using an ATP-dependent mechanism that remains to be elucidated. Here, we show how condensin activity alters the topology of the interacting DNA. High condensin concentrations restrain positive DNA supercoils. However, in experimental conditions of DNA loop extrusion, condensin restrains negative supercoils. Namely, following ATP-mediated loading onto DNA, each condensin complex constrains a DNA linking number difference (∆Lk) of -0.4. This ∆Lk increases to -0.8 during ATP binding and resets to -0.4 upon ATP hydrolysis. These changes in DNA topology do not involve DNA unwinding, do not spread outside the condensin-DNA complex and can occur in the absence of the condensin subunit Ycg1. These findings indicate that during ATP binding, a short DNA domain delimited by condensin is pinched into a negatively supercoiled loop. We propose that this loop is the feeding segment of DNA that is subsequently merged to enlarge an extruding loop. Such a "pinch and merge" mechanism implies that two DNA-binding sites produce the feeding loop, while a third site, plausibly involving Ycg1, might anchor the extruding loop.
Collapse
Affiliation(s)
| | - Sílvia Dyson
- DNA Topology LabMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Joana Segura
- DNA Topology LabMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Alba Ayats
- DNA Topology LabMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Erin E Cutts
- DNA Motors GroupMRC London Institute of Medical Sciences (LMS)LondonUK
| | | | - Luís Aragón
- DNA Motors GroupMRC London Institute of Medical Sciences (LMS)LondonUK
| | - Joaquim Roca
- DNA Topology LabMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
25
|
Wasim A, Gupta A, Bera P, Mondal J. Interpretation of organizational role of proteins on E. coli nucleoid via Hi-C integrated model. Biophys J 2023; 122:63-81. [PMID: 36435970 PMCID: PMC9822802 DOI: 10.1016/j.bpj.2022.11.2938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/23/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Several proteins in Escherichia coli work together to maintain the complex organization of its chromosome. However, the individual roles of these so-called nucleoid-associated proteins (NAPs) in chromosome architectures are not well characterized. Here, we quantitatively dissect the organizational roles of Heat Unstable (HU), a ubiquitous protein in E. coli and MatP, an NAP specifically binding to the Ter macrodomain of the chromosome. Toward this end, we employ a polymer physics-based computer model of wild-type chromosome and their HU- and MatP-devoid counterparts by incorporating their respective experimentally derived Hi-C contact matrix, cell dimensions, and replication status of the chromosome commensurate with corresponding growth conditions. Specifically, our model for the HU-devoid chromosome corroborates well with the microscopy observation of compaction of chromosome at short genomic range but diminished long-range interactions, justifying precedent hypothesis of segregation defect upon HU removal. Control simulations point out that the change in cell dimension and chromosome content in the process of HU removal holds the key to the observed differences in chromosome architecture between wild-type and HU-devoid cells. On the other hand, simulation of MatP-devoid chromosome led to locally enhanced contacts between Ter and its flanking macrodomains, consistent with previous recombination assay experiments and MatP's role in insulation of the Ter macrodomain from the rest of the chromosome. However, the simulation indicated no change in matS sites' localization. Rather, a set of designed control simulations showed that insulation of Ter is not caused by bridging of distant matS sites, also lending credence to a recent mobility experiment on various loci of the E. coli chromosome. Together, the investigations highlight the ability of an integrative model of the bacterial genome in elucidating the role of NAPs and in reconciling multiple experimental observations.
Collapse
Affiliation(s)
- Abdul Wasim
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Ankit Gupta
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Palash Bera
- Tata Institute of Fundamental Research, Hyderabad, India
| | | |
Collapse
|
26
|
Japaridze A, van Wee R, Gogou C, Kerssemakers JWJ, van den Berg DF, Dekker C. MukBEF-dependent chromosomal organization in widened Escherichia coli. Front Microbiol 2023; 14:1107093. [PMID: 36937278 PMCID: PMC10020239 DOI: 10.3389/fmicb.2023.1107093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
The bacterial chromosome is spatially organized through protein-mediated compaction, supercoiling, and cell-boundary confinement. Structural Maintenance of Chromosomes (SMC) complexes are a major class of chromosome-organizing proteins present throughout all domains of life. Here, we study the role of the Escherichia coli SMC complex MukBEF in chromosome architecture and segregation. Using quantitative live-cell imaging of shape-manipulated cells, we show that MukBEF is crucial to preserve the toroidal topology of the Escherichia coli chromosome and that it is non-uniformly distributed along the chromosome: it prefers locations toward the origin and away from the terminus of replication, and it is unevenly distributed over the origin of replication along the two chromosome arms. Using an ATP hydrolysis-deficient MukB mutant, we confirm that MukBEF translocation along the chromosome is ATP-dependent, in contrast to its loading onto DNA. MukBEF and MatP are furthermore found to be essential for sister chromosome decatenation. We propose a model that explains how MukBEF, MatP, and their interacting partners organize the chromosome and contribute to sister segregation. The combination of bacterial cell-shape modification and quantitative fluorescence microscopy paves way to investigating chromosome-organization factors in vivo.
Collapse
|
27
|
DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage. Mol Cell 2022; 82:4727-4740.e6. [PMID: 36525956 DOI: 10.1016/j.molcel.2022.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Structural maintenance of chromosome (SMC) complexes fold DNA by loop extrusion to support chromosome segregation and genome maintenance. Wadjet systems (JetABCD/MksBEFG/EptABCD) are derivative SMC complexes with roles in bacterial immunity against selfish DNA. Here, we show that JetABCD restricts circular plasmids with an upper size limit of about 100 kb, whereas a linear plasmid evades restriction. Purified JetABCD complexes cleave circular DNA molecules, regardless of the DNA helical topology; cleavage is DNA sequence nonspecific and depends on the SMC ATPase. A cryo-EM structure reveals a distinct JetABC dimer-of-dimers geometry, with the two SMC dimers facing in opposite direction-rather than the same as observed with MukBEF. We hypothesize that JetABCD is a DNA-shape-specific endonuclease and propose the "total extrusion model" for DNA cleavage exclusively when extrusion of an entire plasmid has been completed by a JetABCD complex. Total extrusion cannot be achieved on the larger chromosome, explaining how self-DNA may evade processing.
Collapse
|
28
|
Freitag M, Jaklin S, Padovani F, Radzichevici E, Zernia S, Schmoller KM, Stigler J. Single-molecule experiments reveal the elbow as an essential folding guide in SMC coiled-coil arms. Biophys J 2022; 121:4702-4713. [PMID: 36242515 PMCID: PMC9748247 DOI: 10.1016/j.bpj.2022.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/16/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022] Open
Abstract
Structural maintenance of chromosome (SMC) complexes form ring-like structures through exceptional elongated coiled-coils (CCs). Recent studies found that variable CC conformations, including open and collapsed forms, which might result from discontinuities in the CC, facilitate the diverse functions of SMCs in DNA organization. However, a detailed description of the SMC CC architecture is still missing. Here, we study the structural composition and mechanical properties of SMC proteins with optical tweezers unfolding experiments using the isolated Psm3 CC as a model system. We find a comparatively unstable protein with three unzipping intermediates, which we could directly assign to CC features by crosslinking experiments and state-of-the-art prediction software. Particularly, the CC elbow is shown to be a flexible, potentially non-structured feature, which divides the CC into sections, induces a pairing shift from one CC strand to the other and could facilitate large-scale conformational changes, most likely via thermal fluctuations of the flanking CC sections. A replacement of the elbow amino acids hinders folding of the consecutive CC region and frequently leads to non-native misalignments, revealing the elbow as a guide for proper folding. Additional in vivo manipulation of the elbow flexibility resulted in impaired cohesin complexes, which directly link the sensitive CC architecture to the biological function of cohesin.
Collapse
Affiliation(s)
- Marvin Freitag
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sigrun Jaklin
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Sarah Zernia
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
29
|
Konishi K, Yasutake Y, Muramatsu S, Murata S, Yoshida K, Ishiya K, Aburatani S, Sakasegawa SI, Tamura T. Disruption of SMC-related genes promotes recombinant cholesterol esterase production in Burkholderia stabilis. Appl Microbiol Biotechnol 2022; 106:8093-8110. [PMID: 36399168 DOI: 10.1007/s00253-022-12277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
Burkholderia stabilis strain FERMP-21014 secretes cholesterol esterase (BsChe), which is used in clinical settings to determine serum cholesterol levels. Previously, we constructed an expression plasmid with an endogenous constitutive promoter to enable the production of recombinant BsChe. In this study, we obtained one mutant strain with 13.1-fold higher BsChe activity than the wild type, using N-methyl-N'-nitro-N-nitrosoguanidine as a mutagen. DNA-sequencing analysis revealed that the strain had lost chromosome 3 (∆Chr3), suggesting that the genes hindering BsChe production may be encoded on Chr3. We also identified common mutations in the functionally unknown BSFP_068720/30 genes in the top 10 active strains generated during transposon mutagenesis. As BSFP_068720/30/40 comprised an operon on Chr3, we created the BSFP_068720/30/40 disruption mutant and confirmed that each disruption mutant containing the expression plasmid exhibited ~ 16.1-fold higher BsChe activity than the wild type. Quantitative PCR showed that each disruption mutant and ΔChr3 had a ~ 9.4-fold higher plasmid copy number than the wild type. Structural prediction models indicate that BSFP_068730/40 is structurally homologous to the structural maintenance of chromosomes (SMC) protein MukBE, which is responsible for chromosome segregation during cell division. Conversely, BSFP_068720/30/40 disruption did not lead to a Chr3 drop-out. These results imply that BSFP_068720/30/40 is not a SMC protein but is involved in destabilizing foreign plasmids to prevent the influx of genetic information from the environment. In conclusion, the disruption of BSFP_068720/30/40 improved plasmid stability and copy number, resulting in exceptionally high BsChe production. KEY POINTS: • Disruption of BSFP_068720/30/40 enabled mass production of Burkholderia Che/Lip. • BSFP_068730/40 is an SMC protein homolog not involved in chromosome retention. • BSFP_068720/30/40 is likely responsible for the exclusion of exogenous plasmids.
Collapse
Affiliation(s)
- Kenji Konishi
- Asahi Kasei Pharma Corporation, Shizuoka, 410-2321, Japan.,Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, 169-8555, Japan
| | | | - Satomi Murata
- Asahi Kasei Pharma Corporation, Shizuoka, 410-2321, Japan
| | - Keitaro Yoshida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Koji Ishiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Sachiyo Aburatani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | | | - Tomohiro Tamura
- Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan. .,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan.
| |
Collapse
|
30
|
Deep A, Gu Y, Gao YQ, Ego KM, Herzik MA, Zhou H, Corbett KD. The SMC-family Wadjet complex protects bacteria from plasmid transformation by recognition and cleavage of closed-circular DNA. Mol Cell 2022; 82:4145-4159.e7. [PMID: 36206765 PMCID: PMC9637719 DOI: 10.1016/j.molcel.2022.09.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/19/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Self versus non-self discrimination is a key element of innate and adaptive immunity across life. In bacteria, CRISPR-Cas and restriction-modification systems recognize non-self nucleic acids through their sequence and their methylation state, respectively. Here, we show that the Wadjet defense system recognizes DNA topology to protect its host against plasmid transformation. By combining cryoelectron microscopy with cross-linking mass spectrometry, we show that Wadjet forms a complex similar to the bacterial condensin complex MukBEF, with a novel nuclease subunit similar to a type II DNA topoisomerase. Wadjet specifically cleaves closed-circular DNA in a reaction requiring ATP hydrolysis by the structural maintenance of chromosome (SMC) ATPase subunit JetC, suggesting that the complex could use DNA loop extrusion to sense its substrate's topology, then specifically activate the nuclease subunit JetD to cleave plasmid DNA. Overall, our data reveal how bacteria have co-opted a DNA maintenance machine to specifically recognize and destroy foreign DNAs through topology sensing.
Collapse
Affiliation(s)
- Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yong-Qi Gao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaori M Ego
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark A Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
Collier JE, Nasmyth KA. DNA passes through cohesin's hinge as well as its Smc3-kleisin interface. eLife 2022; 11:80310. [PMID: 36094369 PMCID: PMC9467508 DOI: 10.7554/elife.80310] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 12/17/2022] Open
Abstract
The ring model proposes that sister chromatid cohesion is mediated by co-entrapment of sister DNAs inside a single tripartite cohesin ring. The model explains how Scc1 cleavage triggers anaphase but has hitherto only been rigorously tested using small circular mini-chromosomes in yeast, where covalently circularizing the ring by crosslinking its three interfaces induces catenation of individual and sister DNAs. If the model applies to real chromatids, then the ring must have a DNA entry gate essential for mitosis. Whether this is situated at the Smc3/Scc1 or Smc1/Smc3 hinge interface is an open question. We have previously demonstrated DNA entrapment by cohesin in vitro (Collier et al., 2020). Here we show that cohesin in fact possesses two DNA gates, one at the Smc3/Scc1 interface and a second at the Smc1/3 hinge. Unlike the Smc3/Scc1 interface, passage of DNAs through SMC hinges depends on both Scc2 and Scc3, a pair of regulatory subunits necessary for entrapment in vivo. This property together with the lethality caused by locking this interface but not that between Smc3 and Scc1 in vivo suggests that passage of DNAs through the hinge is essential for building sister chromatid cohesion. Passage of DNAs through the Smc3/Scc1 interface is necessary for cohesin’s separase-independent release from chromosomes and may therefore largely serve as an exit gate.
Collapse
Affiliation(s)
- James E Collier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Bock FP, Liu HW, Anchimiuk A, Diebold-Durand ML, Gruber S. A joint-ParB interface promotes Smc DNA recruitment. Cell Rep 2022; 40:111273. [PMID: 36044845 PMCID: PMC9449133 DOI: 10.1016/j.celrep.2022.111273] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomes readily unlink and segregate to daughter cells during cell division, highlighting a remarkable ability of cells to organize long DNA molecules. SMC complexes promote DNA organization by loop extrusion. In most bacteria, chromosome folding initiates at dedicated start sites marked by the ParB/parS partition complexes. Whether SMC complexes recognize a specific DNA structure in the partition complex or a protein component is unclear. By replacing genes in Bacillus subtilis with orthologous sequences from Streptococcus pneumoniae, we show that the three subunits of the bacterial Smc complex together with the ParB protein form a functional module that can organize and segregate foreign chromosomes. Using chimeric proteins and chemical cross-linking, we find that ParB directly binds the Smc subunit. We map an interface to the Smc joint and the ParB CTP-binding domain. Structure prediction indicates how the ParB clamp presents DNA to the Smc complex, presumably to initiate DNA loop extrusion.
Collapse
Affiliation(s)
- Florian P Bock
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
| | - Hon Wing Liu
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
| | - Anna Anchimiuk
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
| | - Marie-Laure Diebold-Durand
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
33
|
Hallett ST, Campbell Harry I, Schellenberger P, Zhou L, Cronin N, Baxter J, Etheridge T, Murray J, Oliver A. Cryo-EM structure of the Smc5/6 holo-complex. Nucleic Acids Res 2022; 50:9505-9520. [PMID: 35993814 PMCID: PMC9458440 DOI: 10.1093/nar/gkac692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 01/06/2023] Open
Abstract
The Smc5/6 complex plays an essential role in the resolution of recombination intermediates formed during mitosis or meiosis, or as a result of the cellular response to replication stress. It also functions as a restriction factor preventing viral replication. Here, we report the cryogenic EM (cryo-EM) structure of the six-subunit budding yeast Smc5/6 holo-complex, reconstituted from recombinant proteins expressed in insect cells - providing both an architectural overview of the entire complex and an understanding of how the Nse1/3/4 subcomplex binds to the hetero-dimeric SMC protein core. In addition, we demonstrate that a region within the head domain of Smc5, equivalent to the 'W-loop' of Smc4 or 'F-loop' of Smc1, mediates an important interaction with Nse1. Notably, mutations that alter the surface-charge profile of the region of Nse1 which accepts the Smc5-loop, lead to a slow-growth phenotype and a global reduction in the chromatin-associated fraction of the Smc5/6 complex, as judged by single molecule localisation microscopy experiments in live yeast. Moreover, when taken together, our data indicates functional equivalence between the structurally unrelated KITE and HAWK accessory subunits associated with SMC complexes.
Collapse
Affiliation(s)
- Stephen T Hallett
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Isabella Campbell Harry
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Pascale Schellenberger
- Electron Microscopy Imaging Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Nora B Cronin
- London Consortium for CryoEM (LonCEM) Facility, The Francis Crick Institute, London, UK
| | - Jonathan Baxter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Thomas J Etheridge
- Correspondence may also be addressed to Thomas J. Etheridge. Tel: +44 1273 678123;
| | - Johanne M Murray
- Correspondence may also be addressed to Johanne M. Murray. Tel: +44 1273 877191;
| | - Antony W Oliver
- To whom correspondence should be addressed. Tel: +44 1273 678349;
| |
Collapse
|
34
|
Cohesin ATPase activities regulate DNA binding and coiled-coil configuration. Proc Natl Acad Sci U S A 2022; 119:e2208004119. [PMID: 35939705 PMCID: PMC9388089 DOI: 10.1073/pnas.2208004119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cohesin is a heteropentameric protein complex consisting of two structural maintenance of chromosomes (SMC) subunits and three non-SMC subunits. The two SMC subunits form a heterodimer with an ATPase head and hinge that are connected by long coiled coils. Isolation of ATPase mutants followed by comprehensive identification of suppressor mutations in SMC subunits that can bypass ATPase defects was performed. Locations and properties of mutant alleles reflect how ATPase activities could be compromised by structural adaptation. ATP-driven conformational changes may enhance DNA anchoring by the head, alter interactions of coiled coils at the head with other subunits for DNA to go through, and fold/extend coiled coils near break sites around midpoint to bring together DNA elements far from each other. The cohesin complex is required for sister chromatid cohesion and genome compaction. Cohesin coiled coils (CCs) can fold at break sites near midpoints to bring head and hinge domains, located at opposite ends of coiled coils, into proximity. Whether ATPase activities in the head play a role in this conformational change is yet to be known. Here, we dissected functions of cohesin ATPase activities in cohesin dynamics in Schizosaccharomyces pombe. Isolation and characterization of cohesin ATPase temperature-sensitive (ts) mutants indicate that both ATPase domains are required for proper chromosome segregation. Unbiased screening of spontaneous suppressor mutations rescuing the temperature lethality of cohesin ATPase mutants identified several suppressor hotspots in cohesin that located outside of ATPase domains. Then, we performed comprehensive saturation mutagenesis targeted to these suppressor hotspots. Large numbers of the identified suppressor mutations indicated several different ways to compensate for the ATPase mutants: 1) Substitutions to amino acids with smaller side chains in coiled coils at break sites around midpoints may enable folding and extension of coiled coils more easily; 2) substitutions to arginine in the DNA binding region of the head may enhance DNA binding; or 3) substitutions to hydrophobic amino acids in coiled coils, connecting the head and interacting with other subunits, may alter conformation of coiled coils close to the head. These results reflect serial structural changes in cohesin driven by its ATPase activities potentially for packaging DNAs.
Collapse
|
35
|
Cryo-EM structure of DNA-bound Smc5/6 reveals DNA clamping enabled by multi-subunit conformational changes. Proc Natl Acad Sci U S A 2022; 119:e2202799119. [PMID: 35648833 PMCID: PMC9191643 DOI: 10.1073/pnas.2202799119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Smc5/6 complex plays multiple roles in DNA replication and repair. Its genome-protecting functions rely on its interaction with DNA; however, how this complex engages DNA is poorly understood. We report on a cryogenic electron microscopy structure of DNA-bound budding yeast Smc5/6 complex, revealing that its subunits form a clamp to encircle a double-helical DNA. We define the multi-subunit interactions forming the DNA clamp and the DNA binding sites distributed among subunits. We identify subunit transformations upon DNA capture and functional effects conferred by its multiple DNA contact sites. Our findings, in conjunction with studies on other structural maintenance of chromosomes (SMC) complexes, suggest a common SMC DNA-clamp mechanism with individual complex specific features that enable diverse genome organization and protection functions by SMC family complexes. Structural maintenance of chromosomes (SMC) complexes are essential for chromatin organization and functions throughout the cell cycle. The cohesin and condensin SMCs fold and tether DNA, while Smc5/6 directly promotes DNA replication and repair. The functions of SMCs rely on their abilities to engage DNA, but how Smc5/6 binds and translocates on DNA remains largely unknown. Here, we present a 3.8 Å cryogenic electron microscopy (cryo-EM) structure of DNA-bound Saccharomyces cerevisiae Smc5/6 complex containing five of its core subunits, including Smc5, Smc6, and the Nse1-3-4 subcomplex. Intricate interactions among these subunits support the formation of a clamp that encircles the DNA double helix. The positively charged inner surface of the clamp contacts DNA in a nonsequence-specific manner involving numerous DNA binding residues from four subunits. The DNA duplex is held up by Smc5 and 6 head regions and positioned between their coiled-coil arm regions, reflecting an engaged-head and open-arm configuration. The Nse3 subunit secures the DNA from above, while the hook-shaped Nse4 kleisin forms a scaffold connecting DNA and all other subunits. The Smc5/6 DNA clamp shares similarities with DNA-clamps formed by other SMCs but also exhibits differences that reflect its unique functions. Mapping cross-linking mass spectrometry data derived from DNA-free Smc5/6 to the DNA-bound Smc5/6 structure identifies multi-subunit conformational changes that enable DNA capture. Finally, mutational data from cells reveal distinct DNA binding contributions from each subunit to Smc5/6 chromatin association and cell fitness. In summary, our integrative study illuminates how a unique SMC complex engages DNA in supporting genome regulation.
Collapse
|
36
|
Nomidis SK, Carlon E, Gruber S, Marko JF. DNA tension-modulated translocation and loop extrusion by SMC complexes revealed by molecular dynamics simulations. Nucleic Acids Res 2022; 50:4974-4987. [PMID: 35474142 PMCID: PMC9122525 DOI: 10.1093/nar/gkac268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.
Collapse
Affiliation(s)
- Stefanos K Nomidis
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
- Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| | - Enrico Carlon
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Stephan Gruber
- Départment de Microbiologie Fondamentale, Université de Lausanne, 1015 Lausanne, Switzerland
| | - John F Marko
- Department of Physics and Astronomy, and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
37
|
A walk through the SMC cycle: From catching DNAs to shaping the genome. Mol Cell 2022; 82:1616-1630. [PMID: 35477004 DOI: 10.1016/j.molcel.2022.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
SMC protein complexes are molecular machines that provide structure to chromosomes. These complexes bridge DNA elements and by doing so build DNA loops in cis and hold together the sister chromatids in trans. We discuss how drastic conformational changes allow SMC complexes to build such intricate DNA structures. The tight regulation of these complexes controls fundamental chromosomal processes such as transcription, recombination, repair, and mitosis.
Collapse
|
38
|
Intersubunit and intrasubunit interactions driving the MukBEF ATPase. J Biol Chem 2022; 298:101964. [PMID: 35452680 PMCID: PMC9127220 DOI: 10.1016/j.jbc.2022.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/23/2022] Open
Abstract
MukBEF, a structural maintenance of chromosome-like protein complex consisting of an ATPase, MukB, and two interacting subunits, MukE and MukF, functions as the bacterial condensin. It is likely that MukBEF compacts DNA via an ATP hydrolysis-dependent DNA loop-extrusion reaction similar to that demonstrated for the yeast structural maintenance of chromosome proteins condensin and cohesin. MukB also interacts with the ParC subunit of the cellular chromosomal decatenase topoisomerase IV, an interaction that is required for proper chromosome condensation and segregation in Escherichia coli, although it suppresses the MukB ATPase activity. Other structural determinants and interactions that regulate the ATPase activity of MukBEF are not clear. Here, we have investigated the MukBEF ATPase activity, identifying intersubunit and intrasubunit interactions by protein-protein crosslinking and site-specific mutagenesis. We show that interactions between the hinge of MukB and its neck region are essential for the ATPase activity, that the ParC subunit of topoisomerase IV inhibits the MukB ATPase by preventing this interaction, that MukE interaction with DNA is likely essential for viability, and that interactions between MukF and the MukB neck region are necessary for ATPase activity and viability.
Collapse
|
39
|
Lee BG, Rhodes J, Löwe J. Clamping of DNA shuts the condensin neck gate. Proc Natl Acad Sci U S A 2022; 119:e2120006119. [PMID: 35349345 PMCID: PMC9168836 DOI: 10.1073/pnas.2120006119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/24/2022] [Indexed: 01/05/2023] Open
Abstract
SignificanceDNA needs to be compacted to fit into nuclei and during cell division, when dense chromatids are formed for their mechanical segregation, a process that depends on the protein complex condensin. It forms and enlarges loops in DNA through loop extrusion. Our work resolves the atomic structure of a DNA-bound state of condensin in which ATP has not been hydrolyzed. The DNA is clamped within a compartment that has been reported previously in other structural maintenance of chromosomes (SMC) complexes, including Rad50, cohesin, and MukBEF. With the caveat of important differences, it means that all SMC complexes cycle through at least some similar states and undergo similar conformational changes in their head modules, while hydrolyzing ATP and translocating DNA.
Collapse
Affiliation(s)
- Byung-Gil Lee
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James Rhodes
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Jan Löwe
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
40
|
Higashi TL, Uhlmann F. SMC complexes: Lifting the lid on loop extrusion. Curr Opin Cell Biol 2022; 74:13-22. [PMID: 35016058 PMCID: PMC9089308 DOI: 10.1016/j.ceb.2021.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023]
Abstract
Loop extrusion has emerged as a prominent hypothesis for how SMC complexes shape chromosomes - single molecule in vitro observations have yielded fascinating images of this process. When not extruding loops, SMC complexes are known to topologically entrap one or more DNAs. Here, we review how structural insight into the SMC complex cohesin has led to a molecular framework for both activities: a Brownian ratchet motion, associated with topological DNA entry, might repeat itself to elicit loop extrusion. After contrasting alternative loop extrusion models, we explore whether topological loading or loop extrusion is more adept at explaining in vivo SMC complex function. SMC variants that experimentally separate topological loading from loop extrusion will in the future probe their respective contributions to chromosome biology.
Collapse
Affiliation(s)
- Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Department of Cellular Biochemistry, Kyushu University, Fukuoka, 812-8582, Japan
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
41
|
Qian JW, Wang XY, Deng K, Li DF, Guo L. Crystal structure of the chromosome partition protein MukE homodimer. Biochem Biophys Res Commun 2021; 589:229-233. [PMID: 34929446 DOI: 10.1016/j.bbrc.2021.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/15/2022]
Abstract
The SMC (structural maintenance of chromosomes) proteins are known to be involved in chromosome pairing or aggregation and play an important role in cell cycle and division. Different from SMC-ScpAB complex maintaining chromosome structure in most bacteria, the MukB-MukE-MukF complex is responsible for chromosome condensation in E. coli and some γ-proteobacter. Though different models were proposed to illustrate the mechanism of how the MukBEF complex worked, the assembly of the MukBEF complex is a key. The MukE dimer interacted with the middle region of one MukF molecule, and was clamped by the N- and C-terminal domain of the latter, and then was involved in the interaction with the head domain of MukB. To reveal the structural basis of MukE involved in the dynamic equilibrium of potential different MukBEF assemblies, we determined the MukE structure at 2.44 Å resolution. We found that the binding cavity for the α10, β4 and β5 of MukF (residues 296-327) in the MukE dimer has been occupied by the α9 and β7 strand of MukE. We proposed that the highly dynamic C-terminal region (173-225) was important for the MukE-F assembly and then involved in the MukBEF complex formation.
Collapse
Affiliation(s)
- Jia-Wei Qian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xiao-Yan Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Kai Deng
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
42
|
Maruyama H, Nambu T, Mashimo C, Okinaga T, Takeyasu K. Single-Molecule/Cell Analyses Reveal Principles of Genome-Folding Mechanisms in the Three Domains of Life. Int J Mol Sci 2021; 22:13432. [PMID: 34948225 PMCID: PMC8707338 DOI: 10.3390/ijms222413432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Comparative structural/molecular biology by single-molecule analyses combined with single-cell dissection, mass spectroscopy, and biochemical reconstitution have been powerful tools for elucidating the mechanisms underlying genome DNA folding. All genomes in the three domains of life undergo stepwise folding from DNA to 30-40 nm fibers. Major protein players are histone (Eukarya and Archaea), Alba (Archaea), and HU (Bacteria) for fundamental structural units of the genome. In Euryarchaeota, a major archaeal phylum, either histone or HTa (the bacterial HU homolog) were found to wrap DNA. This finding divides archaea into two groups: those that use DNA-wrapping as the fundamental step in genome folding and those that do not. Archaeal transcription factor-like protein TrmBL2 has been suggested to be involved in genome folding and repression of horizontally acquired genes, similar to bacterial H-NS protein. Evolutionarily divergent SMC proteins contribute to the establishment of higher-order structures. Recent results are presented, including the use of Hi-C technology to reveal that archaeal SMC proteins are involved in higher-order genome folding, and the use of single-molecule tracking to reveal the detailed functions of bacterial and eukaryotic SMC proteins. Here, we highlight the similarities and differences in the DNA-folding mechanisms in the three domains of life.
Collapse
Affiliation(s)
- Hugo Maruyama
- Department of Bacteriology, Osaka Dental University, Hirakata 573-1121, Japan; (T.N.); (C.M.); (T.O.)
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, Hirakata 573-1121, Japan; (T.N.); (C.M.); (T.O.)
| | - Chiho Mashimo
- Department of Bacteriology, Osaka Dental University, Hirakata 573-1121, Japan; (T.N.); (C.M.); (T.O.)
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, Hirakata 573-1121, Japan; (T.N.); (C.M.); (T.O.)
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan;
- Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
| |
Collapse
|
43
|
Prince JP, Bolla JR, Fisher GLM, Mäkelä J, Fournier M, Robinson CV, Arciszewska LK, Sherratt DJ. Acyl carrier protein promotes MukBEF action in Escherichia coli chromosome organization-segregation. Nat Commun 2021; 12:6721. [PMID: 34795302 PMCID: PMC8602292 DOI: 10.1038/s41467-021-27107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes act ubiquitously to compact DNA linearly, thereby facilitating chromosome organization-segregation. SMC proteins have a conserved architecture, with a dimerization hinge and an ATPase head domain separated by a long antiparallel intramolecular coiled-coil. Dimeric SMC proteins interact with essential accessory proteins, kleisins that bridge the two subunits of an SMC dimer, and HAWK/KITE proteins that interact with kleisins. The ATPase activity of the Escherichia coli SMC protein, MukB, which is essential for its in vivo function, requires its interaction with the dimeric kleisin, MukF that in turn interacts with the KITE protein, MukE. Here we demonstrate that, in addition, MukB interacts specifically with Acyl Carrier Protein (AcpP) that has essential functions in fatty acid synthesis. We characterize the AcpP interaction at the joint of the MukB coiled-coil and show that the interaction is necessary for MukB ATPase and for MukBEF function in vivo.
Collapse
Affiliation(s)
- Josh P. Prince
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.14105.310000000122478951Present Address: Meiosis Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN UK
| | - Jani R. Bolla
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK ,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU UK ,grid.4991.50000 0004 1936 8948Present Address: Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Gemma L. M. Fisher
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.14105.310000000122478951Present Address: DNA Motors Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN UK
| | - Jarno Mäkelä
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.168010.e0000000419368956Present Address: ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305 USA
| | - Marjorie Fournier
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Carol V. Robinson
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK ,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU UK
| | - Lidia K. Arciszewska
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - David J. Sherratt
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|