1
|
Tainer JA, Tsutakawa SE. RNA sculpting by the primordial Helix-clasp-Helix-Strand-Loop (HcH-SL) motif enforces chemical recognition enabling diverse KH domain functions. J Biol Chem 2025; 301:108474. [PMID: 40185232 DOI: 10.1016/j.jbc.2025.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/07/2025] Open
Abstract
In all domains of life, the ancient K homology (KH) domain superfamily is central to RNA processes including splicing, transcription, posttranscriptional gene regulation, signaling, and translation. Proteins with 1 to 15 KH domains bind single-strand (ss) RNA or DNA with base sequence specificity. Here, we examine over 40 KH domain experimental structures in complex with nucleic acid (NA) and define a novel Helix-clasp-Helix-Strand-Loop (HcH-SL) NA recognition motif binding 4 to 5 nucleotides using 10 to 18 residues. HcH-SL includes and extends the Gly-X-X-Gly (GXXG) signature sequence "clasp" that brings together two helices as an ∼90° helical corner. The first helix primarily provides side chain interactions to unstack and sculpt 2 to 3 bases on the 5' end for recognition of sequence and chemistry. The clasp and second helix amino dipole recognize a central phosphodiester. Following the helical corner, a beta strand and its loop extension recognize the two 3' nucleotides, primarily through main chain interactions. The HcH-SL structural motif forms a right-handed triangle and concave functional interface for NA interaction that unexpectedly splays four bound nucleotides into conformations matching RNA recognition motif (RRM) bound RNA structures. Evolutionary analyses and its ability to recognize base sequence and chemistry make HcH-SL a primordial NA binding motif distinguished by its binding mode from other NA structural recognition motifs: helix-turn-helix, helix-hairpin-helix, and beta strand RRM motifs. Combined results explain its vulnerability as a viral hijacking target and how mutations and expression defects lead to diverse diseases spanning cancer, cardiovascular, fragile X syndrome, neurodevelopmental disorders, and paraneoplastic disease.
Collapse
Affiliation(s)
- John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
2
|
Llerena Schiffmacher DA, Pai YJ, Pines A, Vermeulen W. Transcription-coupled repair: tangled up in convoluted repair. FEBS J 2025. [PMID: 40272095 DOI: 10.1111/febs.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/08/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Significant progress has been made in understanding the mechanism of transcription-coupled nucleotide excision repair (TC-NER); however, numerous aspects remain elusive, including TC-NER regulation, lesion-specific and cell type-specific complex composition, structural insights, and lesion removal dynamics in living cells. This review summarizes and discusses recent advancements in TC-NER, focusing on newly identified interactors, mechanistic insights from cryo-electron microscopy (Cryo-EM) studies and live cell imaging, and the contribution of post-translational modifications (PTMs), such as ubiquitin, in regulating TC-NER. Furthermore, we elaborate on the consequences of TC-NER deficiencies and address the role of accumulated damage and persistent lesion-stalled RNA polymerase II (Pol II) as major drivers of the disease phenotype of Cockayne syndrome (CS) and its related disorders. In this context, we also discuss the severe effects of transcription-blocking lesions (TBLs) on neurons, highlighting their susceptibility to damage. Lastly, we explore the potential of investigating three-dimensional (3D) chromatin structure and phase separation to uncover further insights into this essential DNA repair pathway.
Collapse
Affiliation(s)
- Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yun Jin Pai
- Master Scientific Illustrations, Department of Anatomy and Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Valeri E, Kajaste-Rudnitski A. Antiviral immunity lassoed down by excess RNA. J Exp Med 2025; 222:e20241743. [PMID: 39641763 PMCID: PMC11622878 DOI: 10.1084/jem.20241743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Two complementary works by Chan et al. (https://doi.org/10.1084/jem.20231725), and Ru et al. (https://doi.org/10.1084/jem.20240010), identify defective RNA processing as the root cause of impaired antiviral immunity against SARS-CoV2 in the human brainstem. These studies provide molecular insight into virus-associated severe brainstem encephalitis through PKR inactivation.
Collapse
Affiliation(s)
- Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | | |
Collapse
|
4
|
Zaher HS, Mosammaparast N. RNA Damage Responses in Cellular Homeostasis, Genome Stability, and Disease. ANNUAL REVIEW OF PATHOLOGY 2025; 20:433-457. [PMID: 39476409 DOI: 10.1146/annurev-pathmechdis-111523-023516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
All cells are exposed to chemicals that can damage their nucleic acids. Cells must protect these polymers because they code for key factors or complexes essential for life. Much of the work on nucleic acid damage has naturally focused on DNA, partly due to the connection between mutagenesis and human disease, especially cancer. Recent work has shed light on the importance of RNA damage, which triggers a host of conserved RNA quality control mechanisms. Because many RNA species are transient, and because of their ability to be retranscribed, RNA damage has largely been ignored. Yet, because of the connection between damaged RNA and DNA during transcription, and the association between essential complexes that process or decode RNAs, notably spliceosomes and ribosomes, the appropriate handling of damaged RNAs is critical for maintaining cellular homeostasis. This notion is bolstered by disease states, including neurodevelopmental and neurodegenerative diseases, that may arise upon loss or misregulation of RNA quality control mechanisms.
Collapse
Affiliation(s)
- Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA;
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
5
|
Buerer L, Clark NE, Welch A, Duan C, Taggart AJ, Townley BA, Wang J, Soemedi R, Rong S, Lin CL, Zeng Y, Katolik A, Staley JP, Damha MJ, Mosammaparast N, Fairbrother WG. The debranching enzyme Dbr1 regulates lariat turnover and intron splicing. Nat Commun 2024; 15:4617. [PMID: 38816363 PMCID: PMC11139901 DOI: 10.1038/s41467-024-48696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/05/2024] [Indexed: 06/01/2024] Open
Abstract
The majority of genic transcription is intronic. Introns are removed by splicing as branched lariat RNAs which require rapid recycling. The branch site is recognized during splicing catalysis and later debranched by Dbr1 in the rate-limiting step of lariat turnover. Through generation of a viable DBR1 knockout cell line, we find the predominantly nuclear Dbr1 enzyme to encode the sole debranching activity in human cells. Dbr1 preferentially debranches substrates that contain canonical U2 binding motifs, suggesting that branchsites discovered through sequencing do not necessarily represent those favored by the spliceosome. We find that Dbr1 also exhibits specificity for particular 5' splice site sequences. We identify Dbr1 interactors through co-immunoprecipitation mass spectrometry. We present a mechanistic model for Dbr1 recruitment to the branchpoint through the intron-binding protein AQR. In addition to a 20-fold increase in lariats, Dbr1 depletion increases exon skipping. Using ADAR fusions to timestamp lariats, we demonstrate a defect in spliceosome recycling. In the absence of Dbr1, spliceosomal components remain associated with the lariat for a longer period of time. As splicing is co-transcriptional, slower recycling increases the likelihood that downstream exons will be available for exon skipping.
Collapse
Affiliation(s)
- Luke Buerer
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Nathaniel E Clark
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Anastasia Welch
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Chaorui Duan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Allison J Taggart
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Brittany A Townley
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jing Wang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Rachel Soemedi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA
- Department of Genetics, Yale University, New Haven, CT, 06520, USA
| | - Chien-Ling Lin
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yi Zeng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
6
|
Theil AF, Pines A, Kalayci T, Heredia‐Genestar JM, Raams A, Rietveld MH, Sridharan S, Tanis SEJ, Mulder KW, Büyükbabani N, Karaman B, Uyguner ZO, Kayserili H, Hoeijmakers JHJ, Lans H, Demmers JAA, Pothof J, Altunoglu U, El Ghalbzouri A, Vermeulen W. Trichothiodystrophy-associated MPLKIP maintains DBR1 levels for proper lariat debranching and ectodermal differentiation. EMBO Mol Med 2023; 15:e17973. [PMID: 37800682 PMCID: PMC10630875 DOI: 10.15252/emmm.202317973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
The brittle hair syndrome Trichothiodystrophy (TTD) is characterized by variable clinical features, including photosensitivity, ichthyosis, growth retardation, microcephaly, intellectual disability, hypogonadism, and anaemia. TTD-associated mutations typically cause unstable mutant proteins involved in various steps of gene expression, severely reducing steady-state mutant protein levels. However, to date, no such link to instability of gene-expression factors for TTD-associated mutations in MPLKIP/TTDN1 has been established. Here, we present seven additional TTD individuals with MPLKIP mutations from five consanguineous families, with a newly identified MPLKIP variant in one family. By mass spectrometry-based interaction proteomics, we demonstrate that MPLKIP interacts with core splicing factors and the lariat debranching protein DBR1. MPLKIP-deficient primary fibroblasts have reduced steady-state DBR1 protein levels. Using Human Skin Equivalents (HSEs), we observed impaired keratinocyte differentiation associated with compromised splicing and eventually, an imbalanced proteome affecting skin development and, interestingly, also the immune system. Our data show that MPLKIP, through its DBR1 stabilizing role, is implicated in mRNA splicing, which is of particular importance in highly differentiated tissue.
Collapse
Affiliation(s)
- Arjan F Theil
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Alex Pines
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Tuğba Kalayci
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | | | - Anja Raams
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Marion H Rietveld
- Department of DermatologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Sriram Sridharan
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Sabine EJ Tanis
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life SciencesRadboud UniversityNijmegenThe Netherlands
| | - Klaas W Mulder
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life SciencesRadboud UniversityNijmegenThe Netherlands
| | - Nesimi Büyükbabani
- Department of Pathology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Medical GeneticsKoc University HospitalIstanbulTurkey
| | - Birsen Karaman
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Pediatric Basic Sciences, Child Health InstituteIstanbul UniversityIstanbulTurkey
| | - Zehra O Uyguner
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Medical GeneticsKoc University School of Medicine (KUSOM)IstanbulTurkey
| | - Jan HJ Hoeijmakers
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
- Institute for Genome Stability in Aging and Disease, CECAD ForschungszentrumUniversity Hospital of CologneKölnGermany
- Princess Máxima Center for Pediatric OncologyONCODE InstituteUtrechtThe Netherlands
| | - Hannes Lans
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | | | - Joris Pothof
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Medical GeneticsKoc University School of Medicine (KUSOM)IstanbulTurkey
| | | | - Wim Vermeulen
- Department of Molecular GeneticsErasmus MC Cancer InstituteRotterdamThe Netherlands
| |
Collapse
|