1
|
Łopusińska A, Tys M, Boguta M, Cieśla M. RNA polymerase III transcription machinery and tRNA processing are regulated by the ubiquitin ligase Rsp5. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119993. [PMID: 40398754 DOI: 10.1016/j.bbamcr.2025.119993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 05/06/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Transfer RNA (tRNA) biogenesis in yeast involves synthesis of the primary transcript by RNA polymerase III (Pol III), followed by processing to remove 5' and 3' ends, further maturation, and export to the cytoplasm. In the present study, we found that both tRNA transcription and the initial processing of tRNA precursors are affected by the ubiquitin ligase Rsp5. We observed high levels of unprocessed primary tRNA transcripts in rsp5 mutants at elevated temperature, which were reduced upon the overexpression of RPR1, the catalytic subunit of RNase P. This observation suggests a role for Rsp5 in the maturation of 5' ends of tRNA precursors. Under the same conditions, in vivo labeling showed that the amount of newly synthesized tRNA decreased. Furthermore, we found that Rsp5 directly interacted with the Tfc3 subunit of the TFIIIC transcription factor, which is modified by ubiquitination. The inactivation of Rsp5 catalytic activity influenced the interaction between the general Pol III factors TFIIIB and TFIIIC and decreased the recruitment of TFIIIC to tRNA genes. These findings suggest that Rsp5 ligase is implicated in the control of Pol III transcription in yeast.
Collapse
Affiliation(s)
- Aleksandra Łopusińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Tys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Małgorzata Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
2
|
Seifert-Dávila W, Chaban A, Baudin F, Girbig M, Hauptmann L, Hoffmann T, Duss O, Eustermann S, Müller C. Structural and kinetic insights into tRNA promoter engagement by yeast general transcription factor TFIIIC. Nucleic Acids Res 2025; 53:gkae1174. [PMID: 39657784 PMCID: PMC11724288 DOI: 10.1093/nar/gkae1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Transcription of transfer RNA (tRNA) genes by RNA polymerase (Pol) III requires the general transcription factor IIIC (TFIIIC), which recognizes intragenic A-box and B-box DNA motifs of type II gene promoters. However, the underlying mechanism has remained elusive, in part due to missing structural information for A-box recognition. In this study, we use single-particle cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) to reveal structural and real-time kinetic insights into how the 520-kDa yeast TFIIIC complex engages A-box and B-box DNA motifs in the context of a tRNA gene promoter. Cryo-EM structures of τA and τB subcomplexes bound to the A-box and B-box were obtained at 3.7 and 2.5 Å resolution, respectively, while cryo-EM single-particle mapping determined the specific distance and relative orientation of the τA and τB subcomplexes revealing a fully engaged state of TFIIIC. smFRET experiments show that overall recruitment and residence times of TFIIIC on a tRNA gene are primarily governed by B-box recognition, while footprinting experiments suggest a key role of τA and the A-box in TFIIIB and Pol III recruitment following TFIIIC recognition of type II promoters.
Collapse
Affiliation(s)
- Wolfram Seifert-Dávila
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anastasiia Chaban
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Mathias Girbig
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luis Hauptmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Hoffmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
3
|
Mondragón-Rosas F, Florencio-Martínez LE, Villa-Delavequia GS, Manning-Cela RG, Carrero JC, Nepomuceno-Mejía T, Martínez-Calvillo S. Characterization of Tau95 led to the identification of a four-subunit TFIIIC complex in trypanosomatid parasites. Appl Microbiol Biotechnol 2024; 108:109. [PMID: 38204130 PMCID: PMC10781861 DOI: 10.1007/s00253-023-12903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 01/12/2024]
Abstract
RNA polymerase III (RNAP III) synthetizes small essential non-coding RNA molecules such as tRNAs and 5S rRNA. In yeast and vertebrates, RNAP III needs general transcription factors TFIIIA, TFIIIB, and TFIIIC to initiate transcription. TFIIIC, composed of six subunits, binds to internal promoter elements in RNAP III-dependent genes. Limited information is available about RNAP III transcription in the trypanosomatid protozoa Trypanosoma brucei and Leishmania major, which diverged early from the eukaryotic lineage. Analyses of the first published draft of the trypanosomatid genome sequences failed to recognize orthologs of any of the TFIIIC subunits, suggesting that this transcription factor is absent in these parasites. However, a putative TFIIIC subunit was recently annotated in the databases. Here we characterize this subunit in T. brucei and L. major and demonstrate that it corresponds to Tau95. In silico analyses showed that both proteins possess the typical Tau95 sequences: the DNA binding region and the dimerization domain. As anticipated for a transcription factor, Tau95 localized to the nucleus in insect forms of both parasites. Chromatin immunoprecipitation (ChIP) assays demonstrated that Tau95 binds to tRNA and U2 snRNA genes in T. brucei. Remarkably, by performing tandem affinity purifications we identified orthologs of TFIIIC subunits Tau55, Tau131, and Tau138 in T. brucei and L. major. Thus, contrary to what was assumed, trypanosomatid parasites do possess a TFIIIC complex. Other putative interacting partners of Tau95 were identified in T. brucei and L. major. KEY POINTS: • A four-subunit TFIIIC complex is present in T. brucei and L. major • TbTau95 associates with tRNA and U2 snRNA genes • Putative interacting partners of Tau95 might include some RNAP II regulators.
Collapse
Affiliation(s)
- Fabiola Mondragón-Rosas
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Luis E Florencio-Martínez
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Gino S Villa-Delavequia
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de Mexico, CP 07360, México
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, 04510, México
| | - Tomás Nepomuceno-Mejía
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Santiago Martínez-Calvillo
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México.
| |
Collapse
|
4
|
Savina EA, Shumilina TG, Porolo VA, Lebedev GS, Orlov YL, Anashkina AA, Il’icheva IA. Structural Features of DNA in tRNA Genes and Their Upstream Sequences. Int J Mol Sci 2024; 25:11758. [PMID: 39519309 PMCID: PMC11547032 DOI: 10.3390/ijms252111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
RNA polymerase III (Pol III) transcribes tRNA genes using type II promoters. The internal control regions contain a Box A and a Box B, which are recognized by TFIIIC. The 5'-flanking regions of tRNA genes clearly play a role in the regulation of transcription, but consensus sequences in it have been found only in some plants and S. pombe; although, the TATA binding protein (TBP) is a component of the TFIIIB complex in all eukaryotes. Archaea utilize an ortholog of the TBP. The goal of this work is the detection of the positions of intragenic and extragenic promoters of Pol III, which regulate the transcription of tRNA genes in eukaryotes and archaea. For this purpose, we analyzed textual and some structural, mechanical, and physicochemical properties of the DNA in the 5'-flanking regions of tRNA genes, as well as in 30 bp at the beginning of genes and 60 bp at the end of genes in organisms possessing the TBP or its analog (eukaryotes, archaea) and organisms not possessing the TBP (bacteria). Representative tRNA gene sets of 11 organisms were taken from the GtRNAdb database. We found that the consensuses of A- and B-boxes in organisms from all three domains are identical; although, they differ in the conservativism of some positions. Their location relative to the ends of tRNA genes is also identical. In contrast, the structural and mechanical properties of DNA in the 5'-flanking regions of tRNA genes differ not only between organisms from different domains, but also between organisms from the same domain. Well-expressed TBP binding positions are found only in S. pombe and A. thaliana. We discuss possible reasons for the variability of the 5'-flanking regions of tRNA genes.
Collapse
Affiliation(s)
- Ekaterina A. Savina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.S.); (A.A.A.)
- The Digital Health Center, I.M.Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), 119991 Moscow, Russia; (T.G.S.); (V.A.P.); (G.S.L.); (Y.L.O.)
| | - Tatiana G. Shumilina
- The Digital Health Center, I.M.Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), 119991 Moscow, Russia; (T.G.S.); (V.A.P.); (G.S.L.); (Y.L.O.)
| | - Viktoria A. Porolo
- The Digital Health Center, I.M.Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), 119991 Moscow, Russia; (T.G.S.); (V.A.P.); (G.S.L.); (Y.L.O.)
| | - Georgy S. Lebedev
- The Digital Health Center, I.M.Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), 119991 Moscow, Russia; (T.G.S.); (V.A.P.); (G.S.L.); (Y.L.O.)
| | - Yury L. Orlov
- The Digital Health Center, I.M.Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), 119991 Moscow, Russia; (T.G.S.); (V.A.P.); (G.S.L.); (Y.L.O.)
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Anastasia A. Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.S.); (A.A.A.)
| | - Irina A. Il’icheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.S.); (A.A.A.)
| |
Collapse
|
5
|
van Breugel ME, Gerber A, van Leeuwen F. The choreography of chromatin in RNA polymerase III regulation. Biochem Soc Trans 2024; 52:1173-1189. [PMID: 38666598 PMCID: PMC11346459 DOI: 10.1042/bst20230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
Regulation of eukaryotic gene expression involves a dynamic interplay between the core transcriptional machinery, transcription factors, and chromatin organization and modification. While this applies to transcription by all RNA polymerase complexes, RNA polymerase III (RNAPIII) seems to be atypical with respect to its mechanisms of regulation. One distinctive feature of most RNAPIII transcribed genes is that they are devoid of nucleosomes, which relates to the high levels of transcription. Moreover, most of the regulatory sequences are not outside but within the transcribed open chromatin regions. Yet, several lines of evidence suggest that chromatin factors affect RNAPIII dynamics and activity and that gene sequence alone does not explain the observed regulation of RNAPIII. Here we discuss the role of chromatin modification and organization of RNAPIII transcribed genes and how they interact with the core transcriptional RNAPIII machinery and regulatory DNA elements in and around the transcribed genes.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam 1081HV, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
6
|
Belkevich AE, Khalil AY, Decatur WA, Palumbo RJ, Knutson BA. Minimization and complete loss of general transcription factor proteins in the intracellular parasite Encephalitozoon cuniculi. Transcription 2024; 15:97-113. [PMID: 38722258 PMCID: PMC11810082 DOI: 10.1080/21541264.2024.2350162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 01/06/2025] Open
Abstract
Genome compaction is a common evolutionary feature of parasites. The unicellular, obligate intracellular parasite Encephalitozoon cuniculi has one of smallest known eukaryotic genomes, and is nearly four times smaller than its distant fungi relative, the budding yeast Saccharomyces cerevisiae. Comparison of the proteins encoded by compacted genomes to those encoded by larger genomes can reveal the most highly conserved features of the encoded proteins. In this study, we identified the proteins comprising the RNA polymerases and their corresponding general transcription factors by using several bioinformatic approaches to compare the transcription machinery of E. cuniculi and S. cerevisiae. Surprisingly, our analyses revealed an overall reduction in the size of the proteins comprising transcription machinery of E. cuniculi, which includes the loss of entire regions or functional domains from proteins, as well as the loss of entire proteins and complexes. Unexpectedly, we found that the E. cuniculi ortholog of Rpc37 (a RNA Polymerase III subunit) more closely resembles the H. sapiens ortholog of Rpc37 than the S. cerevisiae ortholog of Rpc37, in both size and structure. Overall, our findings provide new insight into the minimal core eukaryotic transcription machinery and help define the most critical features of Pol components and general transcription factors.
Collapse
Affiliation(s)
- Alana E. Belkevich
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Andrew Y. Khalil
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Wayne A. Decatur
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ryan J. Palumbo
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Bruce A. Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
7
|
Yang DL, Huang K, Deng D, Zeng Y, Wang Z, Zhang Y. DNA-dependent RNA polymerases in plants. THE PLANT CELL 2023; 35:3641-3661. [PMID: 37453082 PMCID: PMC10533338 DOI: 10.1093/plcell/koad195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/09/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
DNA-dependent RNA polymerases (Pols) transfer the genetic information stored in genomic DNA to RNA in all organisms. In eukaryotes, the typical products of nuclear Pol I, Pol II, and Pol III are ribosomal RNAs, mRNAs, and transfer RNAs, respectively. Intriguingly, plants possess two additional Pols, Pol IV and Pol V, which produce small RNAs and long noncoding RNAs, respectively, mainly for silencing transposable elements. The five plant Pols share some subunits, but their distinct functions stem from unique subunits that interact with specific regulatory factors in their transcription cycles. Here, we summarize recent advances in our understanding of plant nucleus-localized Pols, including their evolution, function, structures, and transcription cycles.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenxing Wang
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|