1
|
Hirano T. Mitotic genome folding. J Cell Biol 2025; 224:e202504075. [PMID: 40492990 DOI: 10.1083/jcb.202504075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/30/2025] [Accepted: 06/02/2025] [Indexed: 06/12/2025] Open
Abstract
Mitotic genome folding, or mitotic chromosome assembly, is essential for the faithful segregation of genetic information into daughter cells. While this process was once thought to be highly complex, requiring a myriad of protein components, recent studies have begun to revise this conventional view. An emerging view is that the core reaction of mitotic genome folding is mediated by a dynamic interplay of a limited number of structural components, namely, condensins, topoisomerase II (topo II), and histones. Condensins and topo II are two distinct classes of ATPases that cooperate to actively form and manipulate DNA loops, both accumulating at the central axial regions of the resulting chromosomes. In contrast, nucleosomes and linker histones help to compact DNA loops by cooperating and competing with the action of these ATPases. In this review, I will focus on the recent advances in the field, with an emphasis on the mechanistic aspects of mitotic genome folding.
Collapse
|
2
|
Analikwu BT, Deshayes A, van der Torre J, Guérin TM, Katan AJ, Béneut C, Barth R, Phipps J, Scolari V, Veaute X, Busso D, Dubrana K, Mattarocci S, Dekker C, Marcand S. Telomeres stall DNA loop extrusion by condensin. Cell Rep 2025; 44:115900. [PMID: 40560727 DOI: 10.1016/j.celrep.2025.115900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/19/2025] [Accepted: 06/03/2025] [Indexed: 06/28/2025] Open
Abstract
DNA loop extrusion by SMC proteins is a key process underlying chromosomal organization. It is unknown how loop extruders interact with telomeres where DNA is densely covered with proteins. Using complementary in vivo and in vitro single-molecule approaches, we study how loop-extruding condensin interacts with Rap1, the telomeric DNA-binding protein of Saccharomyces cerevisiae. We show that dense linear Rap1 arrays can completely halt DNA loop extrusion, with a blocking efficiency depending on the array length and the DNA gap size between proteins. In anaphase cells, dense Rap1 arrays are found to accumulate condensin and to cause a local chromatin decompaction, as monitored with a microscopy-based approach, with direct implications for the resolution of dicentric chromosomes produced by telomere fusions. Our findings show that linear arrays of DNA-bound proteins can efficiently halt DNA loop extrusion by SMC proteins, which may impact cellular processes from telomere functions to transcription and DNA repair.
Collapse
Affiliation(s)
- Brian T Analikwu
- Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Alice Deshayes
- Université Paris-Saclay, Université Paris-Cité, CEA, Inserm, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Jaco van der Torre
- Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Thomas M Guérin
- Université Paris-Saclay, Université Paris-Cité, CEA, Inserm, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Allard J Katan
- Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Claire Béneut
- Université Paris-Saclay, Université Paris-Cité, CEA, Inserm, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Roman Barth
- Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jamie Phipps
- Université Paris-Saclay, Université Paris-Cité, CEA, Inserm, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Vittore Scolari
- Institut Curie, PSL Research University, Sorbonne Université, Paris, France
| | - Xavier Veaute
- Université Paris-Saclay, Université Paris-Cité, CEA, Inserm, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Didier Busso
- Université Paris-Saclay, Université Paris-Cité, CEA, Inserm, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Karine Dubrana
- Université Paris-Saclay, Université Paris-Cité, CEA, Inserm, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Stefano Mattarocci
- Université Paris-Saclay, Université Paris-Cité, CEA, Inserm, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France.
| | - Cees Dekker
- Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Stéphane Marcand
- Université Paris-Saclay, Université Paris-Cité, CEA, Inserm, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France.
| |
Collapse
|
3
|
Samejima K, Gibcus JH, Abraham S, Cisneros-Soberanis F, Samejima I, Beckett AJ, Pučeková N, Abad MA, Spanos C, Medina-Pritchard B, Paulson JR, Xie L, Jeyaprakash AA, Prior IA, Mirny LA, Dekker J, Goloborodko A, Earnshaw WC. Rules of engagement for condensins and cohesins guide mitotic chromosome formation. Science 2025; 388:eadq1709. [PMID: 40208986 PMCID: PMC12118822 DOI: 10.1126/science.adq1709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/25/2024] [Indexed: 04/12/2025]
Abstract
We used Hi-C, imaging, proteomics, and polymer modeling to define rules of engagement for SMC (structural maintenance of chromosomes) complexes as cells refold interphase chromatin into rod-shaped mitotic chromosomes. First, condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. Second, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion as sisters separate. Studies of mitotic chromosomes formed by cohesin, condensin II, and condensin I alone or in combination lead to refined models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase, loops are extruded in vivo at ∼1 to 3 kilobases per second by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Sameer Abraham
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | | | - Itaru Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Alison J. Beckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Nina Pučeková
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Maria Alba Abad
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Bethan Medina-Pritchard
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - James R. Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - A. Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
- Gene Center Munich, Ludwig-Maximilians-Universität München; Munich, Germany
| | - Ian A. Prior
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | | | - William C. Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| |
Collapse
|
4
|
Uhlmann F. A unified model for cohesin function in sisterchromatid cohesion and chromatin loop formation. Mol Cell 2025; 85:1058-1071. [PMID: 40118039 DOI: 10.1016/j.molcel.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 03/23/2025]
Abstract
The ring-shaped cohesin complex topologically entraps two DNAs to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape by forming DNA loops, which it is thought to achieve using an in vitro-observed loop extrusion mechanism. However, recent studies revealed that loop-extrusion-deficient cohesin retains its ability to form chromatin loops, suggesting a divergence of in vitro and in vivo loop formation. Instead of loop extrusion, we examine whether cohesin forms chromatin loops by a mechanism akin to sister chromatid cohesion establishment: sequential topological capture of two DNAs. We explore similarities and differences between the "loop capture" and the "loop extrusion" model, how they compare at explaining experimental observations, and how future approaches can delineate their possible respective contributions. We extend our DNA-DNA capture model for cohesin function to related structural maintenance of chromosomes (SMC) family members, condensin, the Smc5-Smc6 complex, and bacterial SMC complexes.
Collapse
Affiliation(s)
- Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
5
|
Barth R, Davidson IF, van der Torre J, Taschner M, Gruber S, Peters JM, Dekker C. SMC motor proteins extrude DNA asymmetrically and can switch directions. Cell 2025; 188:749-763.e21. [PMID: 39824185 DOI: 10.1016/j.cell.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/13/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025]
Abstract
Structural maintenance of chromosomes (SMC) complexes organize the genome via DNA loop extrusion. Although some SMCs were reported to do so symmetrically, reeling DNA from both sides into the extruded DNA loop simultaneously, others perform loop extrusion asymmetrically toward one direction only. The mechanism underlying this variability remains unclear. Here, we examine the directionality of DNA loop extrusion by SMCs using in vitro single-molecule experiments. We find that cohesin and SMC5/6 do not reel in DNA from both sides, as reported before, but instead extrude DNA asymmetrically, although the direction can switch over time. Asymmetric DNA loop extrusion thus is the shared mechanism across all eukaryotic SMC complexes. For cohesin, direction switches strongly correlate with the turnover of the subunit NIPBL, during which DNA strand switching may occur. Apart from expanding by extrusion, loops frequently diffuse and shrink. The findings reveal that SMCs, surprisingly, can switch directions.
Collapse
Affiliation(s)
- Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Michael Taschner
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
6
|
Hirano T, Kinoshita K. SMC-mediated chromosome organization: Does loop extrusion explain it all? Curr Opin Cell Biol 2025; 92:102447. [PMID: 39603149 DOI: 10.1016/j.ceb.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In recent years, loop extrusion has attracted much attention as a general mechanism of chromosome organization mediated by structural maintenance of chromosomes (SMC) protein complexes, such as condensin and cohesin. Despite accumulating evidence in support of this mechanism, it is not fully established whether or how loop extrusion operates under physiological conditions, or whether any alternative or additional SMC-mediated mechanisms operate in the cell. In this review, we summarize non-loop extrusion mechanisms proposed in the literature and clarify unresolved issues to further enrich our understanding of how SMC protein complexes work.
Collapse
Affiliation(s)
- Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Kazuhisa Kinoshita
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Valdés A, Haering CH. Adding a twist to the loops: the role of DNA superhelicity in the organization of chromosomes by SMC protein complexes. Biochem Soc Trans 2024; 52:2487-2497. [PMID: 39700017 PMCID: PMC11668287 DOI: 10.1042/bst20240650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Structural maintenance of chromosomes (SMC) protein complexes, including cohesin, condensin, and the Smc5/6 complex, are integral to various processes in chromosome biology. Despite their distinct roles, these complexes share two key properties: the ability to extrude DNA into large loop structures and the capacity to alter the superhelicity of the DNA double helix. In this review, we explore the influence of eukaryotic SMC complexes on DNA topology, debate its potential physiological function, and discuss new structural insights that may explain how these complexes mediate changes in DNA topology.
Collapse
Affiliation(s)
- Antonio Valdés
- Chair of Biochemistry and Cell Biology, Biocenter, Julius-Maximilians-Universität of Würzburg, Wurzburg, Germany
| | - Christian H. Haering
- Chair of Biochemistry and Cell Biology, Biocenter, Julius-Maximilians-Universität of Würzburg, Wurzburg, Germany
| |
Collapse
|
8
|
Yuan T, Yan H, Li KC, Surovtsev I, King MC, Mochrie SGJ. Cohesin distribution alone predicts chromatin organization in yeast via conserved-current loop extrusion. Genome Biol 2024; 25:293. [PMID: 39543681 PMCID: PMC11566905 DOI: 10.1186/s13059-024-03432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Inhomogeneous patterns of chromatin-chromatin contacts within 10-100-kb-sized regions of the genome are a generic feature of chromatin spatial organization. These features, termed topologically associating domains (TADs), have led to the loop extrusion factor (LEF) model. Currently, our ability to model TADs relies on the observation that in vertebrates TAD boundaries are correlated with DNA sequences that bind CTCF, which therefore is inferred to block loop extrusion. However, although TADs feature prominently in their Hi-C maps, non-vertebrate eukaryotes either do not express CTCF or show few TAD boundaries that correlate with CTCF sites. In all of these organisms, the counterparts of CTCF remain unknown, frustrating comparisons between Hi-C data and simulations. RESULTS To extend the LEF model across the tree of life, here, we propose the conserved-current loop extrusion (CCLE) model that interprets loop-extruding cohesin as a nearly conserved probability current. From cohesin ChIP-seq data alone, we derive a position-dependent loop extrusion rate, allowing for a modified paradigm for loop extrusion, that goes beyond solely localized barriers to also include loop extrusion rates that vary continuously. We show that CCLE accurately predicts the TAD-scale Hi-C maps of interphase Schizosaccharomyces pombe, as well as those of meiotic and mitotic Saccharomyces cerevisiae, demonstrating its utility in organisms lacking CTCF. CONCLUSIONS The success of CCLE in yeasts suggests that loop extrusion by cohesin is indeed the primary mechanism underlying TADs in these systems. CCLE allows us to obtain loop extrusion parameters such as the LEF density and processivity, which compare well to independent estimates.
Collapse
Affiliation(s)
- Tianyu Yuan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA
| | - Hao Yan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA
| | - Kevin C Li
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Megan C King
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA.
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, Connecticut, 06511, USA.
| | - Simon G J Mochrie
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA.
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA.
- Department of Applied Physics, Yale University, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
9
|
Prevo B, Earnshaw WC. DNA packaging by molecular motors: from bacteriophage to human chromosomes. Nat Rev Genet 2024; 25:785-802. [PMID: 38886215 DOI: 10.1038/s41576-024-00740-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes.
Collapse
Affiliation(s)
- Bram Prevo
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Nozaki T, Weiner B, Kleckner N. Rapid homologue juxtaposition during meiotic chromosome pairing. Nature 2024; 634:1221-1228. [PMID: 39358508 DOI: 10.1038/s41586-024-07999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
A central feature of meiosis is the pairing of homologous maternal and paternal chromosomes ('homologues') along their lengths1-3. Recognition between homologues and their juxtaposition in space is mediated by axis-associated recombination complexes. Also, pairing must occur without entanglements among unrelated chromosomes. Here we examine homologue juxtaposition in real time by four-dimensional fluorescence imaging of tagged chromosomal loci at high spatio-temporal resolution in budding yeast. We discover that corresponding loci come together from a substantial distance (1.8 µm) and complete pairing in a very short time, about 6 min (thus, rapid homologue juxtaposition or RHJ). Homologue loci first move rapidly together (in 30 s, at speeds of roughly 60 nm s-1) into an intermediate stage corresponding to canonical 400 nm axis coalignment. After a short pause, crossover/non-crossover differentiation (crossover interference) mediates a second short, rapid transition that ultimately gives close pairing of axes at 100 nm by means of synaptonemal complex formation. Furthermore, RHJ (1) occurs after chromosomes acquire prophase chromosome organization, (2) is nearly synchronous over thirds of chromosome lengths, but (3) is asynchronous throughout the genome. Finally, cytoskeleton-mediated movement is important for the timing and distance of RHJ onset and for ensuring its normal progression. General implications for local and global aspects of pairing are discussed.
Collapse
Affiliation(s)
- Tadasu Nozaki
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Beth Weiner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
11
|
Rhind N. In through the out door: A loop-binding-first model for topological cohesin loading. Bioessays 2024; 46:e2400120. [PMID: 39159466 PMCID: PMC11427176 DOI: 10.1002/bies.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Cohesin is a ring-shaped complex that is loaded on DNA in two different conformations. In one conformation, it forms loops to organize the interphase genome; in the other, it topologically encircles sibling chromosomes to facilitate homologous recombination and to establish the cohesion that is required for orderly segregation during mitosis. How, and even if, these two loading conformation are related is unclear. Here, I propose that loop binding is a required first step for topological binding. This loop-binding-first model integrates the known information about the two loading mechanisms, explains genetic requirements for the two and explains how topological loading evolved from loop binding.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
12
|
Guérin TM, Barrington C, Pobegalov G, Molodtsov MI, Uhlmann F. An extrinsic motor directs chromatin loop formation by cohesin. EMBO J 2024; 43:4173-4196. [PMID: 39160275 PMCID: PMC11445435 DOI: 10.1038/s44318-024-00202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
The ring-shaped cohesin complex topologically entraps two DNA molecules to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape with wide-ranging implications for gene regulation, and cohesin is thought to achieve this by actively extruding DNA loops without topologically entrapping DNA. The 'loop extrusion' hypothesis finds motivation from in vitro observations-whether this process underlies in vivo chromatin loop formation remains untested. Here, using the budding yeast S. cerevisiae, we generate cohesin variants that have lost their ability to extrude DNA loops but retain their ability to topologically entrap DNA. Analysis of these variants suggests that in vivo chromatin loops form independently of loop extrusion. Instead, we find that transcription promotes loop formation, and acts as an extrinsic motor that expands these loops and defines their ultimate positions. Our results necessitate a re-evaluation of the loop extrusion hypothesis. We propose that cohesin, akin to sister chromatid cohesion establishment at replication forks, forms chromatin loops by DNA-DNA capture at places of transcription, thus unifying cohesin's two roles in chromosome segregation and interphase genome organisation.
Collapse
Affiliation(s)
- Thomas M Guérin
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
- Université Paris Cité and Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Christopher Barrington
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Georgii Pobegalov
- Mechanobiology and Biophysics Laboratory, The Francis Crick Institute, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Maxim I Molodtsov
- Mechanobiology and Biophysics Laboratory, The Francis Crick Institute, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
13
|
Hibino K, Sakai Y, Tamura S, Takagi M, Minami K, Natsume T, Shimazoe MA, Kanemaki MT, Imamoto N, Maeshima K. Single-nucleosome imaging unveils that condensins and nucleosome-nucleosome interactions differentially constrain chromatin to organize mitotic chromosomes. Nat Commun 2024; 15:7152. [PMID: 39169041 PMCID: PMC11339268 DOI: 10.1038/s41467-024-51454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
For accurate mitotic cell division, replicated chromatin must be assembled into chromosomes and faithfully segregated into daughter cells. While protein factors like condensin play key roles in this process, it is unclear how chromosome assembly proceeds as molecular events of nucleosomes in living cells and how condensins act on nucleosomes to organize chromosomes. To approach these questions, we investigate nucleosome behavior during mitosis of living human cells using single-nucleosome tracking, combined with rapid-protein depletion technology and computational modeling. Our results show that local nucleosome motion becomes increasingly constrained during mitotic chromosome assembly, which is functionally distinct from condensed apoptotic chromatin. Condensins act as molecular crosslinkers, locally constraining nucleosomes to organize chromosomes. Additionally, nucleosome-nucleosome interactions via histone tails constrain and compact whole chromosomes. Our findings elucidate the physical nature of the chromosome assembly process during mitosis.
Collapse
Affiliation(s)
- Kayo Hibino
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Yuji Sakai
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masatoshi Takagi
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Toyoaki Natsume
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
- Molecular Cell Engineering Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masa A Shimazoe
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Masato T Kanemaki
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
- Molecular Cell Engineering Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences, Osaka, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan.
| |
Collapse
|
14
|
Cao Z, Wolynes PG. Motorized chain models of the ideal chromosome. Proc Natl Acad Sci U S A 2024; 121:e2407077121. [PMID: 38954553 PMCID: PMC11252987 DOI: 10.1073/pnas.2407077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
An array of motor proteins consumes chemical energy in setting up the architectures of chromosomes. Here, we explore how the structure of ideal polymer chains is influenced by two classes of motors. The first class which we call "swimming motors" acts to propel the chromatin fiber through three-dimensional space. They represent a caricature of motors such as RNA polymerases. Previously, they have often been described by adding a persistent flow onto Brownian diffusion of the chain. The second class of motors, which we call "grappling motors" caricatures the loop extrusion processes in which segments of chromatin fibers some distance apart are brought together. We analyze these models using a self-consistent variational phonon approximation to a many-body Master equation incorporating motor activities. We show that whether the swimming motors lead to contraction or expansion depends on the susceptibility of the motors, that is, how their activity depends on the forces they must exert. Grappling motors in contrast to swimming motors lead to long-ranged correlations that resemble those first suggested for fractal globules and that are consistent with the effective interactions inferred by energy landscape analyses of Hi-C data on the interphase chromosome.
Collapse
Affiliation(s)
- Zhiyu Cao
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Peter G. Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Physics, Rice University, Houston, TX77005
| |
Collapse
|
15
|
Chua GNL, Liu S. When Force Met Fluorescence: Single-Molecule Manipulation and Visualization of Protein-DNA Interactions. Annu Rev Biophys 2024; 53:169-191. [PMID: 38237015 DOI: 10.1146/annurev-biophys-030822-032904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities-often central to the protein function-thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein-DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
- Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
| |
Collapse
|
16
|
Tang M, Uhlmann F. Protocol for studying topological DNA interactions by purified fission yeast condensin. STAR Protoc 2024; 5:102995. [PMID: 38578833 PMCID: PMC11000164 DOI: 10.1016/j.xpro.2024.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
To understand the transition from interphase chromatin into well-shaped chromosomes during cell divisions, we need to understand the biochemical activities of the contributing proteins. Here, we present a protocol to investigate how the ring-shaped condensin complex sequentially and topologically entraps two DNA substrates. We describe the steps to prepare purified Schizosaccharomyces pombe condensin, as well as bulk biochemical assays to monitor the first and second DNA capture reactions. This protocol may facilitate further investigations of these essential genome organizers. For complete details on the use and execution of this protocol, please refer to Tang et al.1.
Collapse
Affiliation(s)
- Minzhe Tang
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
17
|
Samejima K, Gibcus JH, Abraham S, Cisneros-Soberanis F, Samejima I, Beckett AJ, Pučeková N, Abad MA, Medina-Pritchard B, Paulson JR, Xie L, Jeyaprakash AA, Prior IA, Mirny LA, Dekker J, Goloborodko A, Earnshaw WC. Rules of engagement for condensins and cohesins guide mitotic chromosome formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590027. [PMID: 38659940 PMCID: PMC11042376 DOI: 10.1101/2024.04.18.590027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
During mitosis, interphase chromatin is rapidly converted into rod-shaped mitotic chromosomes. Using Hi-C, imaging, proteomics and polymer modeling, we determine how the activity and interplay between loop-extruding SMC motors accomplishes this dramatic transition. Our work reveals rules of engagement for SMC complexes that are critical for allowing cells to refold interphase chromatin into mitotic chromosomes. We find that condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. In contrast, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion while separating the sisters. Studies of mitotic chromosomes formed by cohesin, condensin II and condensin I alone or in combination allow us to develop new models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins do not freely pass one another but stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase loops are extruded in vivo at ~1-3 kb/sec by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Sameer Abraham
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | | | - Itaru Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Alison J. Beckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Nina Pučeková
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Maria Alba Abad
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Bethan Medina-Pritchard
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - James R. Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - A. Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
- Gene Center Munich, Ludwig-Maximilians-Universität München; Munich, Germany
| | - Ian A. Prior
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | | | - William C. Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| |
Collapse
|
18
|
Lebreton J, Colin L, Chatre E, Bernard P. RNAP II antagonizes mitotic chromatin folding and chromosome segregation by condensin. Cell Rep 2024; 43:113901. [PMID: 38446663 DOI: 10.1016/j.celrep.2024.113901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Condensin shapes mitotic chromosomes by folding chromatin into loops, but whether it does so by DNA-loop extrusion remains speculative. Although loop-extruding cohesin is stalled by transcription, the impact of transcription on condensin, which is enriched at highly expressed genes in many species, remains unclear. Using degrons of Rpb1 or the torpedo nuclease Dhp1XRN2 to either deplete or displace RNAPII on chromatin in fission yeast metaphase cells, we show that RNAPII does not load condensin on DNA. Instead, RNAPII retains condensin in cis and hinders its ability to fold mitotic chromatin and to support chromosome segregation, consistent with the stalling of a loop extruder. Transcription termination by Dhp1 limits such a hindrance. Our results shed light on the integrated functioning of condensin, and we argue that a tight control of transcription underlies mitotic chromosome assembly by loop-extruding condensin.
Collapse
Affiliation(s)
- Jérémy Lebreton
- ENS de Lyon, University Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Léonard Colin
- CNRS Laboratory of Biology and Modelling of the Cell, UMR 5239, ENS de Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Elodie Chatre
- Lymic-Platim, University Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UAR3444, Inserm US8, SFR Biosciences, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Pascal Bernard
- ENS de Lyon, University Lyon, 46 allée d'Italie, 69007 Lyon, France; CNRS Laboratory of Biology and Modelling of the Cell, UMR 5239, ENS de Lyon, 46 allée d'Italie, 69007 Lyon, France.
| |
Collapse
|