1
|
Gillespie A, Loonie K, Zhang F, Prendergast J, Connelley T, Baldwin CL. Next generation sequencing of transcribed genes in ruminant γδ T cell populations. Mol Immunol 2022; 149:129-142. [PMID: 35810664 DOI: 10.1016/j.molimm.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Bovine γδ T cells are distinguished by expression of WC1, hybrid pattern recognition receptors and co-receptors to the T cell receptor (TCR), or their absence. WC1 molecules bind pathogens and the ability of γδ T cells to respond to pathogens largely correlates with their expression of particular WC1 genes. Following activation, the TCR and WC1 molecules co-localize and knocking down WC1 abrogates the ability of WC1-expressing γδ T cells to respond to antigen. It is known that these two major populations, WC1+ and WC1-, differ in their TCR gene expression and previous studies showed other differences using semi-quantitative RT-PCR and serial analysis of gene expression. Differences in genes expressed would influence the functional outcome when WC1+ vs. WC1- γδ T cells respond to pathogens. To identify unique aspects of their transcriptome, here we performed RNA-Seq of flow cytometrically sorted bovine WC1+ and WC1- γδ T cells and compared them to all mononuclear cells in blood. The greatest differences in gene expression were found between γδ T cells and other mononuclear cells and included those involved in lymphocyte activation and effector processes. Only minor differences occurred between ex vivo WC1+ vs. WC1- γδ T cells with those gene products being involved in cell adhesion and chemotaxis. After culturing cells from primed animals with Leptospira antigens major difference in the transcriptome was evident, with over 600 genes significantly differentially expressed including those focused on cytokine signaling. Unexpectedly, antigen-responding and non-responding populations of WC1+ γδ T cells had few differences in their transcriptomes outside of cytotoxic factors although they had more WC1-1, WC1-2 and WC1-13 transcripts. Through differential gene expression we were able to define properties of ex vivo and stimulated WC1+ cells which will be useful in understanding their functional biology.
Collapse
Affiliation(s)
- Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kathleen Loonie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Fengqiu Zhang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | | | - Cynthia L Baldwin
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA; Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
2
|
Le Page L, Baldwin CL, Telfer JC. γδ T cells in artiodactyls: Focus on swine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104334. [PMID: 34919982 DOI: 10.1016/j.dci.2021.104334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Vaccination is the most effective medical strategy for disease prevention but there is a need to improve livestock vaccine efficacy. Understanding the structure of the immune system of swine, which are considered a γδ T cell "high" species, and thus, particularly how to engage their γδ T cells for immune responses, may allow for development of vaccine optimization strategies. The propensity of γδ T cells to home to specific tissues, secrete pro-inflammatory and regulatory cytokines, exhibit memory or recall responses and even function as antigen-presenting cells for αβ T cells supports the concept that they have enormous potential for priming by next generation vaccine constructs to contribute to protective immunity. γδ T cells exhibit several innate-like antigen recognition properties including the ability to recognize antigen in the absence of presentation via major histocompatibility complex (MHC) molecules enabling γδ T cells to recognize an array of peptides but also non-peptide antigens in a T cell receptor-dependent manner. γδ T cell subpopulations in ruminants and swine can be distinguished based on differential expression of the hybrid co-receptor and pattern recognition receptors (PRR) known as workshop cluster 1 (WC1). Expression of various PRR and other innate-like immune receptors diversifies the antigen recognition potential of γδ T cells. Finally, γδ T cells in livestock are potent producers of critical master regulator cytokines such as interferon (IFN)-γ and interleukin (IL)-17, whose production orchestrates downstream cytokine and chemokine production by other cells, thereby shaping the immune response as a whole. Our knowledge of the biology, receptor expression and response to infectious diseases by swine γδ T cells is reviewed here.
Collapse
Affiliation(s)
- Lauren Le Page
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Cynthia L Baldwin
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Janice C Telfer
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
3
|
Bovine Immune Response to Vaccination and Infection with Leptospira borgpetersenii Serovar Hardjo. mSphere 2021; 6:6/2/e00988-20. [PMID: 33762318 PMCID: PMC8546708 DOI: 10.1128/msphere.00988-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study examined the humoral and cellular response of cattle vaccinated with two commercial leptospiral vaccines, Leptavoid and Spirovac, and a novel bacterin vaccine using Seppic Montanide oil emulsion adjuvant. Vaccination was followed by experimental challenge. All vaccinated cattle were protected from colonization of the kidney and shedding of Leptospira in urine, as detected by culture and immunofluorescence assay. Agglutinating antibody titers were detected in vaccinated cattle at 4 weeks following vaccination, with small anamnestic response detected following experimental challenge. Only animals vaccinated with the oil emulsion-adjuvanted bacterin produced significant IgG2 titers following vaccination, and nonvaccinated animals produced serum IgA titers after experimental challenge. CD4+ and γδ T cells from vaccinated cattle proliferated when cultured with antigen ex vivo. Cellular responses included a marked proliferation of γδ T cells immediately following experimental challenge in vaccinated cattle and release of gamma interferon (IFN-γ), interleukin 17a (IL-17a), and IL-12p40 from stimulated cells. Proliferative and cytokine responses were found not just in peripheral mononuclear cells but also in lymphocytes isolated from renal lymph nodes at 10 weeks following experimental challenge. Overall, effects of leptospirosis vaccination and infection were subtle, resulting in only modest activation of CD4+ and γδ T cells. The use of Seppic Montanide oil emulsion adjuvants may shorten the initiation of response to vaccination, which could be useful during outbreaks or in areas where leptospirosis is endemic. IMPORTANCE Leptospirosis is an underdiagnosed, underreported zoonotic disease of which domestic livestock can be carriers. As a reservoir host for Leptospira borgpetersenii serovar Hardjo, cattle may present with reproductive issues, including abortion, birth of weak or infected calves, or failure to breed. Despite years of study and the availability of commercial vaccines, detailed analysis of the bovine immune response to vaccination and Leptospira challenge is lacking. This study evaluated immunologic responses to two efficacious commercial vaccines and a novel bacterin vaccine using an adjuvant chosen for enhanced cellular immune responses. Antigen-specific responsive CD4 and γδ T cells were detected following vaccination and were associated with release of inflammatory cytokines IFN-γ and IL-17a after stimulation. CD4 and γδ cells increased in the first week after infection and, combined with serum antibody, may play a role in clearance of bacteria from the blood and resident tissues. Additionally, these antigen-reactive T cells were found in the regional lymph nodes following infection, indicating that memory responses may not be circulating but are still present in regional lymph nodes. The information gained in this study expands knowledge of bovine immune response to leptospirosis vaccines and infection. The use of oil emulsion adjuvants may enhance early immune responses to leptospiral bacterins, which could be useful in outbreaks or situations where leptospirosis is endemic.
Collapse
|
4
|
Hedges JF, Jutila MA. Harnessing γδ T Cells as Natural Immune Modulators. MUCOSAL VACCINES 2020. [PMCID: PMC7150015 DOI: 10.1016/b978-0-12-811924-2.00046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Abstract
Gamma delta (γδ) T cells constitute a major lymphocyte population in peripheral blood and epithelial surfaces. They play nonredundant roles in host defense against diverse pathogens. Although γδ T cells share functional features with other cells of the immune system, their distinct methods of antigen recognition, rapid response, and tissue tropism make them a unique effector population. This review considers the current state of our knowledge on γδ T cell biology in ruminants and the important roles played by this nonconventional T cell population in protection against several infectious diseases of veterinary and zoonotic importance.
Collapse
|
6
|
Baldwin CL, Yirsaw A, Gillespie A, Le Page L, Zhang F, Damani-Yokota P, Telfer JC. γδ T cells in livestock: Responses to pathogens and vaccine potential. Transbound Emerg Dis 2019; 67 Suppl 2:119-128. [PMID: 31515956 DOI: 10.1111/tbed.13328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/30/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
The immediate objective of our research is to understand the molecular mechanisms underlying activation and potentiation of the protective functional response of WC1+ γδ T cells to pathogens afflicting livestock species. The long-term goal is to incorporate stimulation of these cells into the next generation of vaccine constructs. γδ T cells have roles in the immune response to many infectious diseases including viral, bacterial, protozoan and worm infections, and their functional responses overlap with those of canonical αβ T cells, for example they produce cytokines including interferon-γ and IL-17. Stimulation of non-conventional lymphocytes including γδ T cells and αβ natural killer T (NKT) cells has been shown to contribute to protective immunity in mammals, bridging the gap between the innate and adaptive immune responses. Because of their innate-like early response, understanding how to engage γδ T-cell responses has the potential to optimize strategies of those that aim to induce pro-inflammatory responses as discussed here.
Collapse
Affiliation(s)
- Cynthia L Baldwin
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Alehegne Yirsaw
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Lauren Le Page
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Fengqiu Zhang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Payal Damani-Yokota
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Janice C Telfer
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
7
|
Vermijlen D, Gatti D, Kouzeli A, Rus T, Eberl M. γδ T cell responses: How many ligands will it take till we know? Semin Cell Dev Biol 2018; 84:75-86. [PMID: 29402644 DOI: 10.1016/j.semcdb.2017.10.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
γδ T cells constitute a sizeable and non-redundant fraction of the total T cell pool in all jawed vertebrates, but in contrast to conventional αβ T cells they are not restricted by classical MHC molecules. Progress in our understanding of the role of γδ T cells in the immune system has been hampered, and is being hampered, by the considerable lack of knowledge regarding the antigens γδ T cells respond to. The past few years have seen a wealth of data regarding the TCR repertoires of distinct γδ T cell populations and a growing list of confirmed and proposed molecules that are recognised by γδ T cells in different species. Yet, the physiological contexts underlying the often restricted TCR usage and the chemical diversity of γδ T cell ligands remain largely unclear, and only few structural studies have confirmed direct ligand recognition by the TCR. We here review the latest progress in the identification and validation of putative γδ T cell ligands and discuss the implications of such findings for γδ T cell responses in health and disease.
Collapse
Affiliation(s)
- David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Belgium.
| | - Deborah Gatti
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Belgium
| | - Ariadni Kouzeli
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Teja Rus
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom; Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
8
|
Fenzl L, Göbel TW, Neulen ML. γδ T cells represent a major spontaneously cytotoxic cell population in the chicken. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:175-183. [PMID: 28377199 DOI: 10.1016/j.dci.2017.03.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Natural killer cells in the chicken are mainly confined to the intestine, while only small frequencies are detectable in spleen, lung and blood. Here, we compared the spontaneous cytotoxicity of lymphocytes isolated from blood, spleen and intestine using a flow cytometric based cytotoxicity assay. There was no spontaneous cytotoxicity detected in chicken blood preparations. In contrast, freshly prepared splenocytes exhibited a spontaneous cytotoxicity of up to 50% and intestinal epithelial lymphocytes of up to 85%. This cytotoxicity was observed against the RP9 but not against the chicken CU24 target cell line. The observed cytotoxicity was MHC unrestricted since B2B2 derived effector cells killed RP9 target cells (B2B15) equally well compared to MHC mismatched 2D8 targets (B19B19). The cytotoxicity of splenocytes was enhanced by preincubation with IL-2 or strongly increased with IL-2 plus IL-12. By cell sorting, we identified the CD8+γδ T cell subset as the major effectors, whereas both CD8-γδ T cells and CD8+αβ T cells had only low cytolytic potential. Within intestinal lymphocyte CD45+cells displayed cytotoxicity as well as sorted γδ T cells and NK cell. In conclusion, the chicken γδ T cells represent a major cytotoxic lymphocyte subset that can lyse target cells in a MHC unrestricted manner.
Collapse
Affiliation(s)
- Lisa Fenzl
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Thomas W Göbel
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany.
| | - Marie-Luise Neulen
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany
| |
Collapse
|
9
|
Leite FL, Eslabão LB, Pesch B, Bannantine JP, Reinhardt TA, Stabel JR. ZAP-70, CTLA-4 and proximal T cell receptor signaling in cows infected with Mycobacterium avium subsp. paratuberculosis. Vet Immunol Immunopathol 2015; 167:15-21. [PMID: 26163934 DOI: 10.1016/j.vetimm.2015.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Paratuberculosis is a chronic intestinal disease of ruminant animals caused by Mycobacterium avium subsp. paratuberculosis (MAP). A hallmark of paratuberculosis is a transition from a cell-mediated Th1 type response to a humoral Th2 response with the progression of disease from a subclinical to clinical state. The objective of this study was to investigate the expression of two crucial molecules in T cell function, ZAP-70 (zeta-chain-associated protein of 70 kDa) and CTLA-4 (cytotoxic T-lymphocyte antigen-4), in cows naturally infected with MAP. Peripheral blood mononuclear cells (PBMCs) isolated from control non-infected cows (n=5), and cows in subclinical (n=6) and clinical stages of paratuberculosis (n=6) were cultured alone (medium only), and with concanavalin A, and a whole cell sonicate of MAP for 24, 72 and 144 h to measure the dynamic changes of ZAP-70 and CTLA-4 expression on CD4, CD8, and gamma delta (γδ) T cells. Flow cytometry was also performed to measure ZAP-70 phosphorylation to examine proximal T cell receptor signaling in animals of different disease status. The surface expression of CTLA-4 was increased in animals in subclinical stage of infection while levels of ZAP-70 were decreased in CD4+ T cells of both subclinical and clinical animals, indicating a change in T cell phenotype with disease state. Interestingly, proximal T cell receptor signaling was not altered in infected animals. This study demonstrated changes in crucial signaling molecules in animals infected with MAP, thereby elucidating T cell alterations associated with disease progression.
Collapse
Affiliation(s)
- Fernando L Leite
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, United States
| | | | - Bruce Pesch
- USDA-ARS, National Animal Disease Center, Ames, IA 50010, United States
| | - John P Bannantine
- USDA-ARS, National Animal Disease Center, Ames, IA 50010, United States
| | | | - Judith R Stabel
- USDA-ARS, National Animal Disease Center, Ames, IA 50010, United States.
| |
Collapse
|
10
|
Hsu H, Chen C, Nenninger A, Holz L, Baldwin CL, Telfer JC. WC1 is a hybrid γδ TCR coreceptor and pattern recognition receptor for pathogenic bacteria. THE JOURNAL OF IMMUNOLOGY 2015; 194:2280-8. [PMID: 25632007 DOI: 10.4049/jimmunol.1402021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
WC1 proteins are uniquely expressed on γδ T cells and belong to the scavenger receptor cysteine-rich (SRCR) superfamily. While present in variable, and sometimes high, numbers in the genomes of mammals and birds, in cattle there are 13 distinct genes (WC1-1 to WC1-13). All bovine WC1 proteins can serve as coreceptors for the TCR in a tyrosine phosphorylation dependent manner, and some are required for the γδ T cell response to Leptospira. We hypothesized that individual WC1 receptors encode Ag specificity via coligation of bacteria with the γδ TCR. SRCR domain binding was directly correlated with γδ T cell response, as WC1-3 SRCR domains from Leptospira-responsive cells, but not WC1-4 SRCR domains from Leptospira-nonresponsive cells, bound to multiple serovars of two Leptospira species, L. borgpetersenii, and L. interrogans. Three to five of eleven WC1-3 SRCR domains, but none of the eleven WC1-4 SRCR domains, interacted with Leptospira spp. and Borrelia burgdorferi, but not with Escherichia coli or Staphylococcus aureus. Mutational analysis indicated that the active site for bacterial binding in one of the SRCR domains is composed of amino acids in three discontinuous regions. Recombinant WC1 SRCR domains with the ability to bind leptospires inhibited Leptospira growth. Our data suggest that WC1 gene arrays play a multifaceted role in the γδ T cell response to bacteria, including acting as hybrid pattern recognition receptors and TCR coreceptors, and they may function as antimicrobials.
Collapse
Affiliation(s)
- Haoting Hsu
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Chuang Chen
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Ariel Nenninger
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and
| | - Lauren Holz
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and
| | - Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Janice C Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
11
|
Abstract
Pathogenic Leptospira has the capacity to infect a broad range of mammalian hosts. Leptospirosis may appear as an acute, potentially fatal infection in accidental hosts, or progress into a chronic, largely asymptomatic infection in natural maintenance hosts. The course that Leptospira infection follows is dependent upon poorly understood factors, but is heavily influenced by both the host species and bacterial serovar involved in infection. Recognition of pathogen-associated molecular patterns (PAMPs) by a variety of host pattern recognition receptors (PRRs) activates the host immune system. The outcome of this response may result in bacterial clearance, limited bacterial colonization of a few target organs, principally the kidney, or induction of sepsis as the host succumbs to infection and dies. This chapter describes current knowledge of how the host recognizes Leptospira and responds to infection using innate and acquired immune responses. Aspects of immune-mediated pathology and pathogen strategies to evade the host immune response are also addressed.
Collapse
Affiliation(s)
- Richard L Zuerner
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University for Agricultural Sciences, 75007, Uppsala, Sweden,
| |
Collapse
|
12
|
Expression of toll-like receptors and co-stimulatory molecules in lymphoid tissue during experimental infection of beef calves with bovine viral diarrhea virus of low and high virulence. Vet Res Commun 2014; 38:329-35. [DOI: 10.1007/s11259-014-9613-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
|
13
|
McGill JL, Sacco RE, Baldwin CL, Telfer JC, Palmer MV, Ray Waters W. The role of gamma delta T cells in immunity to Mycobacterium bovis infection in cattle. Vet Immunol Immunopathol 2014; 159:133-43. [DOI: 10.1016/j.vetimm.2014.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
McGill JL, Nonnecke BJ, Lippolis JD, Reinhardt TA, Sacco RE. Differential chemokine and cytokine production by neonatal bovine γδ T-cell subsets in response to viral toll-like receptor agonists and in vivo respiratory syncytial virus infection. Immunology 2013; 139:227-44. [PMID: 23368631 DOI: 10.1111/imm.12075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 12/21/2022] Open
Abstract
γδ T cells respond to stimulation via toll-like receptors (TLR). Bovine γδ T cells express TLR3 and TLR7, receptors that are key for the recognition of viruses such as bovine respiratory syncytial virus (BRSV); however, responses of γδ T cells to stimulation via these receptors, and their role during viral infections, remains unclear. Here, we demonstrate that neonatal bovine γδ T cells exhibit robust chemokine and cytokine production in response to the TLR3 agonist, Poly(I:C), and the TLR7 agonist, Imiquimod. Importantly, we observe a similar phenotype in γδ T-cell subsets purified from calves infected with BRSV. Bovine γδ T cells are divided into subsets based upon their expression of WC1, and the response to TLR stimulation and viral infection differs between these subsets, with WC1.1(+) and WC1(neg) γδ T cells producing macrophage inflammatory protein-1α and granulocyte-macrophage colony-stimulating factor, and WC1.2(+) γδ T cells preferentially producing the regulatory cytokines interleukin-10 and transforming growth factor-β. We further report that the active vitamin D metabolite 1,25-dihydroxyvitamin D3 does not alter γδ T-cell responses to TLR agonists or BRSV. To our knowledge, this is the first characterization of the γδ T-cell response during in vivo BRSV infection and the first suggestion that WC1.1(+) and WC1(neg) γδ T cells contribute to the recruitment of inflammatory populations during viral infection. Based on our results, we propose that circulating γδ T cells are poised to rapidly respond to viral infection and suggest an important role for γδ T cells in the innate immune response of the bovine neonate.
Collapse
Affiliation(s)
- Jodi L McGill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, IA 50010, USA.
| | | | | | | | | |
Collapse
|
15
|
Holderness J, Hedges JF, Ramstead A, Jutila MA. Comparative biology of γδ T cell function in humans, mice, and domestic animals. Annu Rev Anim Biosci 2013; 1:99-124. [PMID: 25387013 DOI: 10.1146/annurev-animal-031412-103639] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
γδ T cells are a functionally heterogeneous population and contribute to many early immune responses. The majority of their activity is described in humans and mice, but the immune systems of all jawed vertebrates include the γδ T cell lineage. Although some aspects of γδ T cells vary between species, critical roles in early immune responses are often conserved. Common features of γδ T cells include innate receptor expression, antigen presentation, cytotoxicity, and cytokine production. Herein we compare studies describing these conserved γδ T cell functions and other, potentially unique, functions. γδ T cells are well documented for their potential immunotherapeutic properties; however, these proposed therapies are often focused on human diseases and the mouse models thereof. This review consolidates some of these studies with those in other animals to provide a consensus for the current understanding of γδ T cell function across species.
Collapse
Affiliation(s)
- Jeff Holderness
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana 59717; , , ,
| | | | | | | |
Collapse
|
16
|
The evolutionary basis for differences between the immune systems of man, mouse, pig and ruminants. Vet Immunol Immunopathol 2012; 152:13-9. [PMID: 23078904 DOI: 10.1016/j.vetimm.2012.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Studying the pathogenesis of an infectious disease like colibacillosis requires an understanding of the responses of target hosts to the organism both as a pathogen and as a commensal. The mucosal immune system constitutes the primary line of defence against luminal micro-organisms. The immunoglobulin-superfamily-based adaptive immune system evolved in the earliest jawed vertebrates, and the adaptive and innate immune system of humans, mice, pigs and ruminants co-evolved in common ancestors for approximately 300 million years. The divergence occurred only 100 mya and, as a consequence, most of the fundamental immunological mechanisms are very similar. However, since pressure on the immune system comes from rapidly evolving pathogens, immune systems must also evolve rapidly to maintain the ability of the host to survive and reproduce. As a consequence, there are a number of areas of detail where mammalian immune systems have diverged markedly from each other, such that results obtained in one species are not always immediately transferable to another. Thus, animal models of specific diseases need to be selected carefully, and the results interpreted with caution. Selection is made simpler where specific host species like cattle and pigs can be both target species and reservoirs for human disease, as in infections with Escherichia coli.
Collapse
|
17
|
Guzman E, Price S, Poulsom H, Hope J. Bovine γδ T cells: cells with multiple functions and important roles in immunity. Vet Immunol Immunopathol 2011; 148:161-7. [PMID: 21501878 DOI: 10.1016/j.vetimm.2011.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/01/2011] [Accepted: 03/05/2011] [Indexed: 12/01/2022]
Abstract
The γδ T-cell receptor (TCR)-positive lymphocytes are a major circulating lymphocyte population in cattle, especially in young calves. In contrast, human and mice have low levels of circulating γδ TCR(+) T cells (γδ T cells). The majority of the circulating γδ T cells in ruminants express the workshop cluster 1 (WC1) molecule and are of the phenotype WC1(+) CD2(-) CD4(-) CD8(-). WC1 is a 220000 molecular weight glycoprotein with homology to the scavenger receptor cysteine-rich (SRCR) family, closely related to CD163. The existence of 13 members in the bovine WC1 gene family has recently been demonstrated and although murine and human orthologues to WC1 genes exist, functional gene products have not been identified in species other than ruminants and pigs. Highly diverse TCRδ usage has been reported, with expanded variable genes in cattle compared to humans and mice. Differential γ chain usage is evident between populations of bovine γδ T cells, this may have implications for functionality. There is a growing body of evidence that WC1(+) γδ T cells are important in immune responses to mycobacteria and may have important roles in T cell regulation and antigen presentation. In this review, we will summarize recent observations in γδ T cell biology and the importance of γδ T cells in immune responses to mycobacterial infections in cattle.
Collapse
Affiliation(s)
- Efrain Guzman
- Institute for Animal Health, Division of Immunology, Compton, Newbury RG20 7NN, United Kingdom
| | | | | | | |
Collapse
|
18
|
A Leptospira borgpetersenii serovar Hardjo vaccine induces a Th1 response, activates NK cells, and reduces renal colonization. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:684-91. [PMID: 21288995 DOI: 10.1128/cvi.00288-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic infection of cattle with Leptospira borgpetersenii serovar Hardjo reduces animal production through reproductive failure and presents a persistent health threat to workers in the animal industry. Cattle are maintenance hosts for serovar Hardjo, and development of vaccines that establish long-term protective immunity has been problematic; induction of high titers of anti-serovar Hardjo antibody does not appear to be protective. Rather, development of an antigen-specific Th1 response appears to be critical for limiting renal colonization and urinary shedding of bacteria. In this study we compared two monovalent killed bacterial cell vaccines to assess long-term (12 months) protection against live serovar Hardjo challenge. Although neither vaccine prevented infection, renal colonization and urinary shedding of bacteria were reduced compared to those of control animals. Increased proliferation of CD4(+), CD8(+), and γδ T cells from vaccinated, but not control, animals was detected. In addition, NK cells from vaccinated animals and from all animals following infection, when exposed to antigen ex vivo, demonstrated a gamma interferon (IFN-γ) recall response. We propose that programming NK cells to respond quickly to L. borgpetersenii serovar Hardjo infection may be an important step toward developing protective immunity.
Collapse
|
19
|
Characterization of avian γδ T-cell subsets after Salmonella enterica serovar Typhimurium infection of chicks. Infect Immun 2010; 79:822-9. [PMID: 21078853 DOI: 10.1128/iai.00788-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian γδ T lymphocytes are frequently found in blood and organs and are assumed to be crucial to the immune defense against Salmonella infections of chicks. To elucidate the so-far-unknown immunological features of subpopulations of avian γδ T cells in the course of infection, day-old chicks were infected orally with Salmonella enterica serovar Typhimurium. Until 11 days after infection, the occurrence as well as transcription of the CD8 antigen and immunologically relevant protein genes of CD8α(-) and CD8α(+high) (CD8αα(+) CD8αβ(+)) γδ cells were analyzed using flow cytometry and quantitative real-time reverse transcription-PCR (RT-PCR) with blood, spleen, thymus, and cecum samples. After infection, an increased percentage of CD8α(+high) γδ T lymphocytes was found in blood, in spleen, and, with the highest values and most rapidly, in cecum. Within the CD8α(+high) subset, a significant rise in the number of CD8αα(+) cells was accompanied by enhanced CD8α antigen expression and reduced gene transcription of the CD8β chain. CD8αα(+) and CD8αβ(+) cells showed elevated transcription for Fas, Fas ligand (FasL), interleukin-2 receptor α (IL-2Rα), and gamma interferon (IFN-γ). While the highest fold changes in mRNA levels were observed in CD8αβ(+) cells, the mRNA expression rates of CD8αβ(+) cells never significantly exceeded those of the CD8αα(+) cells. In conclusion, both CD8α(+high) γδ T-cell subpopulations (CD8αα(+) and CD8αβ(+)) might be a potential source of IFN-γ in Salmonella-infected chicks. However, due to their prominent frequency in blood and organs after infection, the avian CD8αα(+) γδ T-cell subset seems to be unique and of importance in the course of Salmonella Typhimurium infection of very young chicks.
Collapse
|
20
|
Grigoryev YA, Kurian SM, Nakorchevskiy AA, Burke JP, Campbell D, Head SR, Deng J, Kantor AB, Yates JR, Salomon DR. Genome-wide analysis of immune activation in human T and B cells reveals distinct classes of alternatively spliced genes. PLoS One 2009; 4:e7906. [PMID: 19936255 PMCID: PMC2775942 DOI: 10.1371/journal.pone.0007906] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/17/2009] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing of pre-mRNA is a mechanism that increases the protein diversity of a single gene by differential exon inclusion/exclusion during post-transcriptional processing. While alternative splicing is established to occur during lymphocyte activation, little is known about the role it plays during the immune response. Our study is among the first reports of a systematic genome-wide analysis of activated human T and B lymphocytes using whole exon DNA microarrays integrating alternative splicing and differential gene expression. Purified human CD2+ T or CD19+ B cells were activated using protocols to model the early events in post-transplant allograft immunity and sampled as a function of time during the process of immune activation. Here we show that 3 distinct classes of alternatively spliced and/or differentially expressed genes change in an ordered manner as a function of immune activation. We mapped our results to function-based canonical pathways and demonstrated that some are populated by only one class of genes, like integrin signaling, while other pathways, such as purine metabolism and T cell receptor signaling, are populated by all three classes of genes. Our studies augment the current view of T and B cell activation in immunity that has been based exclusively upon differential gene expression by providing evidence for a large number of molecular networks populated as a function of time and activation by alternatively spliced genes, many of which are constitutively expressed.
Collapse
Affiliation(s)
- Yevgeniy A Grigoryev
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Antigenic basis of diversity in the γδ T cell co-receptor WC1 family. Mol Immunol 2009; 46:2565-75. [DOI: 10.1016/j.molimm.2009.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 01/31/2023]
|
22
|
Alvarez AJ, Endsley JJ, Werling D, Mark Estes D. WC1+γδ T Cells Indirectly Regulate Chemokine Production DuringMycobacterium bovisInfection in SCID-bo Mice. Transbound Emerg Dis 2009; 56:275-84. [DOI: 10.1111/j.1865-1682.2009.01081.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
García-Piñeres AJ, Hildesheim A, Dodd L, Kemp TJ, Yang J, Fullmer B, Harro C, Lowy DR, Lempicki RA, Pinto LA. Gene expression patterns induced by HPV-16 L1 virus-like particles in leukocytes from vaccine recipients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:1706-29. [PMID: 19155521 PMCID: PMC2701477 DOI: 10.4049/jimmunol.182.3.1706] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human papillomavirus (HPV) virus-like particle (VLP) vaccines were recently licensed. Although neutralizing Ab titers are thought to be the main effectors of protection against infection, early predictors of long-term efficacy are not yet defined and a comprehensive understanding of innate and adaptive immune responses to vaccination is still lacking. Here, microarrays were used to compare the gene expression signature in HPV-16 L1 VLP-stimulated PBMCs from 17 vaccine and 4 placebo recipients before vaccination and 1 mo after receiving the second immunization. Vaccination with a monovalent HPV-16 L1 VLP vaccine was associated with modulation of genes involved in the inflammatory/defense response, cytokine, IFN, and cell cycle pathways in VLP-stimulated PBMCs. Additionally, there was up-regulation of probesets associated with cytotoxic (GZMB, TNFSF10) and regulatory (INDO, CTLA4) activities. The strongest correlations with neutralizing Ab titers were found for cyclin D2 (CCND2) and galectin (LGALS2). Twenty-two differentially expressed probesets were selected for confirmation by RT-PCR in an independent sample set. Agreement with microarray data was seen for more than two-thirds of these probesets. Up-regulation of immune/defense response genes by HPV-16 L1 VLP, in particular, IFN-induced genes, was observed in PBMCs collected before vaccination, with many of these genes being further induced following vaccination. In conclusion, we identified important innate and adaptive response-related genes induced by vaccination with HPV-16 L1 VLP. Further studies are needed to identify gene expression signatures of immunogenicity and long-term protection with potential utility in prediction of long-term HPV vaccination outcomes in clinical trials.
Collapse
Affiliation(s)
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Bethesda, MD
| | - Lori Dodd
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Institutes of Health, Bethesda, MD
| | - Troy J. Kemp
- HPV Immunology Laboratory, SAIC-Frederick, Inc. / NCI-Frederick, Frederick, MD
| | - Jun Yang
- SAIC-Frederick, Inc. / NCI-Frederick, Frederick, MD
| | | | | | - Douglas R. Lowy
- Center for Cancer Research, National Institutes of Health, Bethesda, MD
| | | | - Ligia A. Pinto
- HPV Immunology Laboratory, SAIC-Frederick, Inc. / NCI-Frederick, Frederick, MD
| |
Collapse
|
24
|
Blumerman SL, Herzig CTA, Baldwin CL. WC1+ gammadelta T cell memory population is induced by killed bacterial vaccine. Eur J Immunol 2007; 37:1204-16. [PMID: 17429840 DOI: 10.1002/eji.200636216] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Limited studies have addressed the ability of gammadelta T cells to become memory populations. We previously demonstrated that WC1.1(+) gammadelta T cells from ruminants vaccinated with killed Leptospira borgpetersenii proliferate and produce IFN-gamma in recall responses. Here we show that this response is dependent upon antigen-responsive CD4 T cells, at least across transwell membranes; this requirement cannot be replaced by IL-2. The response was also dependent upon in vivo priming, since gammadelta T cells from leptospira vaccine-naive animals did not respond to antigen even when co-cultured across membranes from antigen-responsive PBMC. Gammadelta T cells were the major antigen-responding T cell population for the first 4 wks following vaccination and replicated more rapidly than CD4 T cells. Primed WC1(+) gammadelta T cells circulated as CD62L(hi)/CD45RO(int)/CD44(lo), characteristics of T(CM) cells. When stimulated with antigen, they decreased CD62L, increased CD44 and CD25, and had no change in CD45RO expression. These changes paralleled those of the leptospira antigen-responsive CD4 T cells but differed from those of gammadelta T cells proliferating to mitogen stimulation. This system for in vivo gammadelta T cell priming is unique, since it relies on a killed antigen to induce memory and may be pertinent to designing vaccines that require type 1 pro-inflammatory cytokines.
Collapse
|
25
|
Born WK, Jin N, Aydintug MK, Wands JM, French JD, Roark CL, O'Brien RL. gammadelta T lymphocytes-selectable cells within the innate system? J Clin Immunol 2007; 27:133-44. [PMID: 17333410 DOI: 10.1007/s10875-007-9077-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 01/22/2007] [Indexed: 12/30/2022]
Abstract
Lymphocytes expressing gammadelta T cell receptors (TCR) constitute an entire system of functionally specialized subsets that have been implicated in the regulation of immune responses, including responses to pathogens and allergens, and in tissue repair. The gammadelta TCRs share structural features with adaptive receptors and peripheral selection of gammadelta T cells occurs. Nevertheless, their specificities may be primarily directed at self-determinants, and the responses of gammadelta T cells exhibit innate characteristics. Continuous cross talk between gammadelta T cells and myeloid cells is evident in histological studies and in in vitro co-culture experiments, suggesting that gammadelta T cells play a functional role as an integral component of the innate immune system.
Collapse
Affiliation(s)
- Willi K Born
- Department of Immunology at National Jewish Medical and Research Center, 1400 Jackson Street, Denver, Colorado 80206, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The production of monoclonal antibodies is very costly, and antibodies are only available for a limited number of species. Until a more cost effective method of antibody production is found, identification of cross-reactive antibodies is an alternative approach that can provide investigators studying immunity in minor species with valuable antibody reagents. Flow cytometry was used to test 21 monoclonal antibodies (mAb), raised against alphabeta and gammadelta T cell receptors and CD3 from human and five animal species, for cross-reactivity in 44 different species including 16 species of nonhuman primates, marsupials, carnivores, lagomorphs, rodents, ruminants, swine, cetacean, horse, birds, a reptile, and fish. Fifteen of the mAbs cross-reacted with orthologous molecules in one or more species. Two antibodies, anti-human TCR gammadelta (B1.1), and anti-human CD3 (SP34) were found to costain in 13 species of nonhuman primates. This study has identified valuable new reagents for studying T cell populations in different animal species and for the first time characterized antibodies useful for studying gammadelta T cell populations in many species of primates. These antibodies may be used for further immunity research in species with less well-characterized immune systems.
Collapse
Affiliation(s)
- Melanie L Conrad
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada V8W 3N5.
| | | | | |
Collapse
|