1
|
Ohdachi T, Matsushima M, Ohara M, Kawashima H, Inoue G, Atsumi K, Tsubosaki Y, Takekoshi M, Ueyama J, Hashimoto N, Sato M, Hasegawa Y, Ishii M, Kawabe T. Degranulation and expression of cytokines were modulated by diazinon in activated mast cells. Toxicology 2024; 506:153882. [PMID: 38971550 DOI: 10.1016/j.tox.2024.153882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Diazinon is an organophosphorus (OP) insecticides used in agriculture, home gardening and indoor pest control in Japan. It can activate macrophages and induce pro-inflammatory responses and has been reported to cause airway hyper-reactivity, suggesting the possibility of asthma exacerbation from exposure to OP insecticides. Despite the correlation between insecticide use and the pathogenesis of allergic diseases, there have been no reports on the effects of diazinon on mast cell function. Therefore, in this study, we investigated the effects of diazinon on mast cell function in rat basophilic leukemia (RBL)-2H3 cells. Surprisingly, we found that diazinon inhibited mast cell activation, although the degree of inhibition varied with concentration. Diazinon induced reactive oxygen species (ROS) generation and HO-1 expression at a concentration of 150 µM without affecting cell viability. Diazinon inhibited A23187-mediated degranulation and Tnf and Il4 expression in RBL-2H3 cells but did not affect calcium influx. Suppression of degranulation by diazinon was reversed when the culture supernatant was removed. As a signaling event downstream of calcium influx, diazinon inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) induced by A23187, whereas the phosphorylation of p38 had little effect. IgE cross-linking-mediated degranulation as well as the induction of Tnf and IL4 expression was significantly inhibited by diazinon, while diazinon had little effect on calcium influx. In conclusion, diazinon inhibited mast cell activation, including degranulation and cytokine expression. When evaluating the in vivo effects of diazinon, its potential to inhibit mast cell activation should be considered in the pathophysiology and development of allergic diseases in terms of basic and clinical aspects, respectively, although the effect of diazinon varies depending on the cell type.
Collapse
Affiliation(s)
- Tomoko Ohdachi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Miyoko Matsushima
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan.
| | - Moeko Ohara
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Hina Kawashima
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Goki Inoue
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Kazuko Atsumi
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Yuka Tsubosaki
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Masahiro Takekoshi
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Jun Ueyama
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan; National Hospital Organization, Nagoya Medical Center, Nagoya, Japan
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Tsutomu Kawabe
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| |
Collapse
|
2
|
Shankar A, McAlees JW, Lewkowich IP. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J Allergy Clin Immunol 2022; 150:266-276. [PMID: 35934680 PMCID: PMC9371363 DOI: 10.1016/j.jaci.2022.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Aberrant activation of CD4 TH2 cells and excessive production of TH2 cytokines such as IL-4 and IL-13 have been implicated in the pathogenesis of allergic diseases. Generally, IL-4 and IL-13 utilize Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways for induction of inflammatory gene expression and the effector functions associated with disease pathology in many allergic diseases. However, it is increasingly clear that JAK/STAT pathways activated by IL-4/IL-13 can themselves be modulated in the presence of other intracellular signaling programs, thereby changing the overall tone and/or magnitude of IL-4/IL-13 signaling. Apart from direct activation of the canonic JAK/STAT pathways, IL-4 and IL-13 also induce proinflammatory gene expression and effector functions through activation of additional signaling cascades. These alternative signaling cascades contribute to several specific aspects of IL-4/IL-13-associated cellular and molecular responses. A more complete understanding of IL-4/IL-13 signaling pathways, including the precise conditions under which noncanonic signaling pathways are activated, and the impact of these pathways on cellular- and host-level responses, will better allow us to design agents that target specific pathologic outcomes or tailor therapies for the treatment of uncommon disease endotypes.
Collapse
|
3
|
De Zuani M, Dal Secco C, Tonon S, Arzese A, Pucillo CEM, Frossi B. LPS Guides Distinct Patterns of Training and Tolerance in Mast Cells. Front Immunol 2022; 13:835348. [PMID: 35251027 PMCID: PMC8891506 DOI: 10.3389/fimmu.2022.835348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Mast cells (MCs) are tissue-resident, long lived innate immune cells with important effector and immunomodulatory functions. They are equipped with an eclectic variety of receptors that enable them to sense multiple stimuli and to generate specific responses according on the type, strength and duration of the stimulation. Several studies demonstrated that myeloid cells can retain immunological memory of their encounters – a process termed ‘trained immunity’ or ‘innate immune memory’. As MCs are among the one of first cells to come into contact with the external environment, it is possible that such mechanisms of innate immune memory might help shaping their phenotype and effector functions; however, studies on this aspect of MC biology are still scarce. In this manuscript, we investigated the ability of MCs primed with different stimuli to respond to a second stimulation with the same or different ligands, and determined the molecular and epigenetic drivers of these responses. Our results showed that, while the stimulation with IgE and β-glucan failed to induce either tolerant or trained phenotypes, LPS conditioning was able to induce a profound and long-lasting remodeling of the signaling pathways involved in the response against LPS or fungal pathogens. On one side, LPS induced a strong state of unresponsiveness to secondary LPS stimulation due to the impairment of the PI3K-AKT signaling pathway, which resulted in the reduced activation of NF-κB and the decreased release of TNF-α and IL-6, compared to naïve MCs. On the other side, LPS primed MCs showed an increased release of TNF-α upon fungal infection with live Candida albicans, thus suggesting a dual role of LPS in inducing both tolerance and training phenotypes depending on the secondary challenge. Interestingly, the inhibition of HDAC during LPS stimulation partially restored the response of LPS-primed MCs to a secondary challenge with LPS, but failed to revert the increased cytokine production of these cells in response to C. albicans. These data indicate that MCs, as other innate immune cells, can develop innate immune memory, and that different stimulatory environments can shape and direct MC specific responses towards the dampening or the propagation of the local inflammatory response.
Collapse
Affiliation(s)
- Marco De Zuani
- Department of Medicine, University of Udine, Udine, Italy.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | | | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | | | | | - Barbara Frossi
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
4
|
Xu L, Chen Y, Li Q, He T, Chen X. Molecular cloning. FISH & SHELLFISH IMMUNOLOGY 2020; 98:981-987. [PMID: 31678189 DOI: 10.1016/j.fsi.2019.10.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Transcription factor c-Jun is a member of AP-1 transcription complex that can be induced by various pathogens and plays a broad regulatory role in vertebrate immune response. In this study, the complete c-Jun cDNA of large yellow croaker Larimichthys crocea (Lcc-Jun) was cloned, whose open reading frame (ORF) is 984 bp long and encodes a protein of 327 amino acids (aa). The deduced Lcc-Jun protein contains three highly conserved domains, a transactivation domain (TAD, Met1-His118), a DNA binding domain (DBD, Lys218-Arg243), and a Leucine zipper domain (LZD, Leu271-Leu299), as found in other specie c-Jun. Lcc-Jun was constitutively expressed in all examined tissues, with the higher levels in blood, heart, and head kidney. Its transcripts were not only induced in spleen and head kidney by poly (I: C) or LPS, but also up-regulated in primary head kidney leukocytes (PKL), macrophages (PKM), and granulocytes (PKG), suggesting that Lcc-Jun may be involved in immune responses induced by poly (I: C), a viral mimic, and LPS, a Gram-negative bacterial component. Overexpression of Lcc-Jun in PKL increased the expression of cytokines and transcription factors involved in T helper 1 (Th1: TNF-α, IFN-γ, and T-bet) and Th2 (IL-4/13 A/B, IL-6, and GATA3) cell development and differentiation, suggesting that Lcc-Jun may play a role in regulation of Th1/Th2 cell response. These results therefore led us to suggest that the c-Jun-mediated signaling pathways may have an important immune-modulatory function in teleost fish.
Collapse
Affiliation(s)
- Libing Xu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhong Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiuhua Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tianliang He
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
5
|
Ceyzériat K, Ben Haim L, Denizot A, Pommier D, Matos M, Guillemaud O, Palomares MA, Abjean L, Petit F, Gipchtein P, Gaillard MC, Guillermier M, Bernier S, Gaudin M, Aurégan G, Joséphine C, Déchamps N, Veran J, Langlais V, Cambon K, Bemelmans AP, Baijer J, Bonvento G, Dhenain M, Deleuze JF, Oliet SHR, Brouillet E, Hantraye P, Carrillo-de Sauvage MA, Olaso R, Panatier A, Escartin C. Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer's disease. Acta Neuropathol Commun 2018; 6:104. [PMID: 30322407 PMCID: PMC6190663 DOI: 10.1186/s40478-018-0606-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/24/2018] [Indexed: 11/26/2022] Open
Abstract
Astrocyte reactivity and neuroinflammation are hallmarks of CNS pathological conditions such as Alzheimer’s disease. However, the specific role of reactive astrocytes is still debated. This controversy may stem from the fact that most strategies used to modulate astrocyte reactivity and explore its contribution to disease outcomes have only limited specificity. Moreover, reactive astrocytes are now emerging as heterogeneous cells and all types of astrocyte reactivity may not be controlled efficiently by such strategies. Here, we used cell type-specific approaches in vivo and identified the JAK2-STAT3 pathway, as necessary and sufficient for the induction and maintenance of astrocyte reactivity. Modulation of this cascade by viral gene transfer in mouse astrocytes efficiently controlled several morphological and molecular features of reactivity. Inhibition of this pathway in mouse models of Alzheimer’s disease improved three key pathological hallmarks by reducing amyloid deposition, improving spatial learning and restoring synaptic deficits. In conclusion, the JAK2-STAT3 cascade operates as a master regulator of astrocyte reactivity in vivo. Its inhibition offers new therapeutic opportunities for Alzheimer’s disease.
Collapse
|
6
|
Nausch N, Mutapi F. Group 2 ILCs: A way of enhancing immune protection against human helminths? Parasite Immunol 2018; 40:e12450. [PMID: 28626924 PMCID: PMC5811928 DOI: 10.1111/pim.12450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) play crucial roles in type 2 immune responses associated with allergic and autoimmune diseases, viral and helminth infections and tissue homoeostasis. Experimental models show that in helminth infections ILC2s provide an early source of type 2 cytokines and therefore are essential for the induction of potentially protective type 2 responses. Much of our knowledge of ILC2s in helminth infections has come from experimental mouse models with very few studies analysing ILC2s in natural human infections. In attempts to harness knowledge from paradigms of the development of protective immunity in human helminth infections for vaccine development, the role of ILC2 cells could be pivotal. So far, potential vaccines against human helminth infections have failed to provide effective protection when evaluated in human studies. In addition to appropriate antigen selection, it is apparent that more detailed knowledge on mechanisms of induction and maintenance of protective immune responses is required. Therefore, there is need to understand how ILC2 cells induce type 2 responses and subsequently support the development of a protective immune response in the context of immunizations. Within this review, we summarize the current knowledge of the biology of ILC2s, discuss the importance of ILC2s in human helminth infections and explore how ILC2 responses could be boosted to efficiently induce protective immunity.
Collapse
Affiliation(s)
- N. Nausch
- Pediatric Pneumology and Infectious Diseases Group, Department of General Pediatrics, Neonatology and Pediatric CardiologyUniversity Children's Hospital, Heinrich‐Heine‐University DuesseldorfDuesseldorfGermany
| | - F. Mutapi
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and EvolutionSchool of Biological Sciences, University of EdinburghEdinburghUK
| |
Collapse
|
7
|
Higuchi H, Shoji T, Murase Y, Iijima S, Nishijima KI. Siglec-9 modulated IL-4 responses in the macrophage cell line RAW264. Biosci Biotechnol Biochem 2015; 80:501-9. [PMID: 26540411 DOI: 10.1080/09168451.2015.1104238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Siglecs, an immunoglobulin-like lectin family that recognizes the sialic acid moiety, regulate various aspects of immune responses. In the present study, we investigated the effects of Siglecs on the macrophage cell line RAW264, which was stimulated with interleukin-4 (IL-4). The induction of arginase-1 (Arg1) by IL-4 was stronger in Siglec-9-expressing cells than in mock cells. Mutations in the cytoplasmic tyrosine-based inhibitory motifs in Siglec-9 markedly reduced the expression of Arg1. The phosphorylation of Akt by IL-4 and extracellular signal-regulated kinase (ERK) without IL-4 was stronger in Siglec-9-expressing cells, indicating the enhanced activation of the phosphatidylinositol 3 kinase (PI-3K) and mitogen-activated protein kinase kinase (MEK)/ERK pathways, respectively. The enhanced expression of Arg1 was inhibited by MEK inhibitors, but not by PI-3K inhibitor. These results indicate that Siglec-9 affects several different signaling pathways in IL-4-stimulated macrophages, which resulted in enhanced induction of Arg1 in Siglec-9-expressing RAW264 cells.
Collapse
Affiliation(s)
- Hiroshi Higuchi
- a Department of Biotechnology , Graduate School of Engineering, Nagoya University , Nagoya , Japan
| | - Toru Shoji
- a Department of Biotechnology , Graduate School of Engineering, Nagoya University , Nagoya , Japan
| | - Yusuke Murase
- a Department of Biotechnology , Graduate School of Engineering, Nagoya University , Nagoya , Japan
| | - Shinji Iijima
- a Department of Biotechnology , Graduate School of Engineering, Nagoya University , Nagoya , Japan
| | - Ken-ichi Nishijima
- a Department of Biotechnology , Graduate School of Engineering, Nagoya University , Nagoya , Japan
| |
Collapse
|
8
|
Boosani CS, Agrawal DK. Methylation and microRNA-mediated epigenetic regulation of SOCS3. Mol Biol Rep 2015; 42:853-72. [PMID: 25682267 DOI: 10.1007/s11033-015-3860-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epigenetic gene silencing of several genes causes different pathological conditions in humans, and DNA methylation has been identified as one of the key mechanisms that underlie this evolutionarily conserved phenomenon associated with developmental and pathological gene regulation. Recent advances in the miRNA technology with high throughput analysis of gene regulation further increased our understanding on the role of miRNAs regulating multiple gene expression. There is increasing evidence supporting that the miRNAs not only regulate gene expression but they also are involved in the hypermethylation of promoter sequences, which cumulatively contributes to the epigenetic gene silencing. Here, we critically evaluated the recent progress on the transcriptional regulation of an important suppressor protein that inhibits cytokine-mediated signaling, SOCS3, whose expression is directly regulated both by promoter methylation and also by microRNAs, affecting its vital cell regulating functions. SOCS3 was identified as a potent inhibitor of Jak/Stat signaling pathway which is frequently upregulated in several pathologies, including cardiovascular disease, cancer, diabetes, viral infections, and the expression of SOCS3 was inhibited or greatly reduced due to hypermethylation of the CpG islands in its promoter region or suppression of its expression by different microRNAs. Additionally, we discuss key intracellular signaling pathways regulated by SOCS3 involving cellular events, including cell proliferation, cell growth, cell migration and apoptosis. Identification of the pathway intermediates as specific targets would not only aid in the development of novel therapeutic drugs, but, would also assist in developing new treatment strategies that could successfully be employed in combination therapy to target multiple signaling pathways.
Collapse
Affiliation(s)
- Chandra S Boosani
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | |
Collapse
|
9
|
Transcription factor GATA1 is dispensable for mast cell differentiation in adult mice. Mol Cell Biol 2014; 34:1812-26. [PMID: 24615013 DOI: 10.1128/mcb.01524-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although previous studies have shown that GATA1 is required for mast cell differentiation, the effects of the complete ablation of GATA1 in mast cells have not been examined. Using conditional Gata1 knockout mice (Gata1(-/y)), we demonstrate here that the complete ablation of GATA1 has a minimal effect on the number and distribution of peripheral tissue mast cells in adult mice. The Gata1(-/y) bone marrow cells were capable of differentiating into mast cells ex vivo. Microarray analyses showed that the repression of GATA1 in bone marrow mast cells (BMMCs) has a small impact on the mast cell-specific gene expression in most cases. Interestingly, however, the expression levels of mast cell tryptases in the mouse chromosome 17A3.3 were uniformly reduced in the GATA1 knockdown cells, and GATA1 was found to bind to a 500-bp region at the 5' end of this locus. Revealing a sharp contrast to that observed in the Gata1-null BMMCs, GATA2 deficiency resulted in a significant loss of the c-Kit(+) FcεRIα(+) mast cell fraction and a reduced expression of several mast cell-specific genes. Collectively, GATA2 plays a more important role than GATA1 in the regulation of most mast cell-specific genes, while GATA1 might play specific roles in mast cell functions.
Collapse
|
10
|
Jin M, Park S, Park BK, Choi JJ, Yoon SJ, Yang M, Pyo MY. Eicosapentaenoic acid and docosahexaenoic acid suppress Th2 cytokine expression in RBL-2H3 basophilic leukemia cells. J Med Food 2014; 17:198-205. [PMID: 24460246 DOI: 10.1089/jmf.2013.2935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is known that the intake of omega-3 fatty acids, such as eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), is beneficial for preventing and/or treating allergic diseases. The pathogenesis of allergic diseases is associated with overactivation of Th2-skewed immunity. Basophils generate large amounts of Th2 cytokines such as interleukin (IL)-4 and IL-13, which are critically involved in allergic inflammation. We investigated how EPA and DHA affect Th2 cytokine expression in phorbol 12-myristate 13-acetate- and ionomycin (PI)-activated RBL-2H3 basophilic leukemia cells. EPA and DHA induced a dramatic decrease in the production of IL-4 and IL-13 and their transcription in a dose-dependent manner. Luciferase assays of RBL-2H3 cells stably expressing Il4 and Il13 promoter-reporter plasmids demonstrated a significant suppression of PI-induced promoter activation. Analysis of certain transcription factors revealed that nuclear expression of c-Fos and the mRNA expression were suppressed by EPA and DHA. Furthermore, they significantly inhibited the nuclear expression and translocation of nuclear factor of activated T cells (NF-AT)1. In contrast, the expression levels of nuclear factor kappa-B (NF-κB), GATA-binding proteins (GATAs), and CCAAT/enhancer binding protein alpha (C/EBPα) were not significantly affected by EPA and DHA. Phosphorylation of extracellular signal-related kinase was inhibited by EPA and DHA, and phosphorylation of p38 mitogen-activated protein kinase was decreased by DHA, but not by EPA. Taken together, our data suggest that EPA and DHA may suppress Th2-skewed allergic immune responses by inhibiting the expression of basophilic IL-4 and IL-13.
Collapse
Affiliation(s)
- Mirim Jin
- 1 Laboratory of Pathology, College of Oriental Medicine, Daejeon University , Daejeon, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim D, Choi J, Kim MJ, Kim SH, Cho SH, Kim S. Reconstitution of anti-allergic activities of PG102 derived from Actinidia arguta by combining synthetic chemical compounds. Exp Biol Med (Maywood) 2013; 238:631-40. [PMID: 23918875 DOI: 10.1177/1535370213489455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PG102, a water-soluble extract from an edible fruit, Actinidia arguta, has previously been shown to control various factors involved in allergy pathogenesis. It was investigated whether the original activities of PG102 could be reconstituted by mixing chemical compounds present in PG102. Six compounds present in PG102 were, individually or in the form of mixtures, tested for their effects on the expression of various Th2 cytokines and inflammatory mediators in the cell-based assay. Each chemical inhibited IL-4 expression to varying degrees. The chemical compounds were combined at a ratio present in PG102, resulting in two formulations, CQMIIH and CQM, consisting of all or the first three of the following chemicals, citric, quinic, and malic acids, myo-inositol, isoquercitrin, and 5-hydroxymethyl-2-furaldehyde. The mixtures reconstituted original activities of PG102 to a significant level. In the murine asthma model, CQM ameliorated asthmatic symptoms and significantly decreased the level of IgE and IL-5. The decreased phosphorylation of ERK1/2 was observed in cells and mice treated with PG102 and the mixtures. Our data indicated that the substantial portion of PG102's anti-allergic activities could be reconstituted, in vitro and in vivo, by mixing six chemical compounds, suggesting the possibility of developing a new type of anti-allergic agent. This approach may be useful for developing chemically defined functional products from complex botanical extracts.
Collapse
Affiliation(s)
- Donghyun Kim
- School of Biological Sciences, Seoul National University, Seoul, 151-747, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Pritchard AL, White OJ, Burel JG, Upham JW. Innate interferons inhibit allergen and microbial specific T(H)2 responses. Immunol Cell Biol 2012; 90:974-7. [PMID: 22825591 DOI: 10.1038/icb.2012.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several studies provided evidence of innate interferons (IFNs) regulating T(H)2 cytokine production using purified CD4(+) memory cells and T(H)2 polarisation via interleukin-4 (IL-4). Vitally, none of these previous studies examined IFN attenuation of T(H)2 responses to allergen or antigen. This study therefore sought to investigate the abrogation of specific allergen- and antigen-stimulated T(H)2 response in peripheral blood mononuclear cells (PBMC) derived from 12 sensitised individuals by IFN-β and IFN-λ. PBMC were cultured in the presence of house dust mite (HDM) allergen, rhinovirus (RV), influenza vaccine and tetanus toxoid (TT)±either IFN-β or IFN-λ for 3 and 5 days. IFN-γ, IL-5 and IL-13 protein levels were measured by ELISA. Quantitative PCR (qPCR) was used to investigate induction of genes involved in control of T(H)2 cytokines. No alteration in T(H)1 IFN-γ allergen/antigen response was observed with addition of IFN-β or IFN-λ. Consistent abrogation of T(H)2 response to HDM and influenza was observed with IFN-β at both time points; attenuation was observed by day 5 with RV and TT. IFN-λ had no consistent effect on T(H)2 production except in the presence of RV (multiplicity of infection=5); a decrease in IL-5 alone was observed in the presence of trivalent inactivated influenza vaccine. GATA binding protein 3 (GATA3) and suppressors of cytokine signalling3 mRNA were differentially regulated in HDM and influenza-stimulated cultures±IFN-β. We concluded that IFN-β produced a strong and consistent abrogation of T(H)2 cytokine production in the presence of a range of allergen and antigen stimulants.
Collapse
Affiliation(s)
- Antonia L Pritchard
- Lung and Allergy Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Buranda, Brisbane, Australia.
| | | | | | | |
Collapse
|