1
|
Liu X, Yang P, Sun H, Zhang Z, Cai C, Xu J, Ding X, Wang X, Lyu S, Li Z, Xu Z, Shi Q, Wang E, Lei C, Chen H, Ru B, Huang Y. CNV analysis of VAMP7 gene reveals variation associated with growth traits in Chinese cattle. Anim Biotechnol 2022:1-7. [PMID: 35236249 DOI: 10.1080/10495398.2021.2011741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Copy number variant (CNV), a common genetic polymorphism, is closely related to the phenotypic variation traits of organisms. Vesicle-associated membrane protein 7 gene (VAMP7) codes a protein, which is a member of the SNARE proteins family and plays an important role in the process of intracellular vesicle transport. In this study, a total of four cattle breeds (Yunling cattle, Xianan cattle, Pinan cattle, Jiaxian red cattle) were used to investigate the copy numbers, and we found an association relationship between CNV of VAMP7 gene and growth traits of cattle by SPSS 20.0 software. The results showed that the CNV type of VAMP7 gene in four cattle breeds had the same distribution, Duplication type occupies a dominant position among the four varieties. In Yunling cattle, the Duplication type of VAMP7 is significantly related to the height at the hip cross (p < 0.05), Individuals with Duplication type commonly have less performance on growth and development, which indicates that the Duplication type of the VAMP7 gene may have a negative effect on cattle growth. Individuals with the other two CNV types may become the breeding direction of the VAMP7 gene. This study provided a new perspective and basic material for the molecular genetics of the CNV of the VAMP7 gene, and also promoted the breeding progress of Chinese local cattle.
Collapse
Affiliation(s)
- Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Haoming Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Cuicui Cai
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, People's Republic of China
| | - Jiawei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Xiaoting Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
2
|
Association of VPREB1 Gene Copy Number Variation and Rheumatoid Arthritis Susceptibility. DISEASE MARKERS 2020; 2020:7189626. [PMID: 33101545 PMCID: PMC7568136 DOI: 10.1155/2020/7189626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/06/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Objective Copy number variation (CNV) is a structural variation in the human genome that has been associated with multiple clinical phenotypes. B cells are important components of rheumatoid arthritis- (RA-) mediated immune response; hence, CNV in the regulators of B cells (such as VPREB1) can influence RA susceptibility. In this study, we aimed to explore the association of CNV in the VPREB1 gene with RA susceptibility in the Pakistani population. Methods A total of 1,106 subjects (616 RA cases, 490 healthy controls) were selected from three rheumatology centers in Pakistan. VPREB1 CNV was determined using the TaqMan® CN assay (Hs02879734_cn, Applied Biosystems, Foster City, CA, USA), and CNV was estimated by using CopyCaller® (version 2.1; Applied Biosystems, USA) software. Odds ratio (OR) was calculated by logistic regression with sex and age as covariates in R. Results A significant association between >2 VPREB1 CNV and RA risk was observed with an OR of 3.92 (95% CI: 1.27 - 12.12; p = 0.01746) in the total sample. Whereas <2 CNV showed a significantly protective effect against RA risk in women with an OR of 0.48 (95% CI: 0.29-0.79; p = 0.00381). Conclusion CNV > 2 of VPREB1 is a risk factor for RA in the total Pakistani population, while CNV < 2 is protective in women.
Collapse
|
3
|
Goshu HA, Xiaoyun W, Chu M, Pengjia B, Xue Zhi D, Yan P. Novel copy number variations of the CHRM3 gene associated with gene expression and growth traits in Chinese Datong yak (Bos grunniens). JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1753750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Habtamu Abera Goshu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
- Oromia Agricultural Research Institute, Bako Agricultural Research Center, Bako, Ethiopia
| | - Wu Xiaoyun
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Bao Pengjia
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Ding Xue Zhi
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| |
Collapse
|
4
|
Goshu HA, Chu M, Xiaoyun W, Pengjia B, Zhi DX, Yan P. Genomic copy number variation of the CHKB gene alters gene expression and affects growth traits of Chinese domestic yak (Bos grunniens) breeds. Mol Genet Genomics 2019; 294:549-561. [DOI: 10.1007/s00438-018-01530-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022]
|
5
|
Goshu HA, Chu M, Wu X, Pengjia B, Ding XZ, Yan P. Association study and expression analysis of GPC1 gene copy number variation in Chinese Datong yak ( Bos grunniens) breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1586456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Habtamu Abera Goshu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
- Animal Science Department, Oromia Agricultural Research Institute, Bako Agricultural Research Center, Bako, Ethiopia
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Bao Pengjia
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Xue Zhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Copy Number Variations of KLF6 Modulate Gene Transcription and Growth Traits in Chinese Datong Yak (Bos Grunniens). Animals (Basel) 2018; 8:ani8090145. [PMID: 30134528 PMCID: PMC6162419 DOI: 10.3390/ani8090145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 02/08/2023] Open
Abstract
Copy number variation (CNV) is a significant marker of the genetic and phenotypic diversity among individuals that accounts for complex quantitative traits of phenotype and diseases via modulating gene dosage and disrupting coding regions in the genome. Biochemically, Kruppel-like factor 6 (KLF6) genes plays a significant role in the regulation of cell differentiation and proliferation and muscle development. The aim of this study was to detect the distributions of KLF6 copy number variations (CNVs) in five breeds of domestic yak and to explore their effect on growth traits and gene expression. The data were analyzed by real-time quantitative PCR (qPCR). Our results elucidated that a decreased CNV in the KLF6 gene is more highly associated (p < 0.05) with various growth traits than increased or normal CNVs in six-month-old and five-year-old Datong yak. Nevertheless, negative correlations between the DNA copy number and KLF6 gene expression were observed in the skeletal muscle of adult Datong yak. These results suggest that CNVs of the KLF6 gene could be crucial genomic markers for growth phenotypes of Chinese Datong yak breeds and this finding constitutes the first evidence of the biological role of KLF6 CNVs in Chinese Datong yak breeds.
Collapse
|
7
|
Xu Y, Shi W, Song R, Long W, Guo H, Yuan S, Zhang T. Divergent patterns of genic copy number variation in KCNIP1 gene reveal risk locus of type 2 diabetes in Chinese population. Endocr J 2018; 65:537-545. [PMID: 29491224 DOI: 10.1507/endocrj.ej17-0496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Copy number variation (CNV) has emerged as another important genetic marker in addition to SNP for understanding etiology of complex disease. Kv channel interacting protein 1 (KCNIP1) is a Ca2+-dependent transcriptional modulator that contributes to the regulation of insulin secretion. Previous genome-wide CNV assay identified the KCNIP1 gene encompassing a CNV region, however, its further effect and risk rate on type 2 diabetes (T2D) have rarely been addressed, especially in Chinese population. The current study aims to detect and excavate genetic distribution profile of KCNIP1 CNV in Chinese T2D and control populations, and further to investigate the associations with clinical characteristics. Divergent patterns of the KCNIP1 CNV were identified (p < 0.01), in which the copy number gain was predominant in T2D, while the copy number normal accounted for the most in control group. Consistently, the individuals with copy number gain showed significant risk on T2D (OR = 4.550, p < 0.01). The KCNIP1 copy numbers presented significantly positive correlations with fasting plasma glucose and glycated hemoglobin in T2D. For OGTT test, the T2D patients with copy number gain had remarkably elevated glucose contents (60, 120, 180-min, p < 0.05 or p < 0.01) and diminished insulin levels (60, 120-min, p < 0.05) than those with copy number loss and normal, which suggested that the KCNIP1 CNV was correlated with the glucose and insulin action. This is the first CNV association study of the KCNIP1 gene in Chinese population, and these data indicated that KCNIP1 might function as a T2D-susceptibility gene whose dysregulation alters insulin production.
Collapse
Affiliation(s)
- Yao Xu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Weilin Shi
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Ruhui Song
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Wenlin Long
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Hui Guo
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Shiliang Yuan
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430064, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| |
Collapse
|
8
|
Shi T, Xu Y, Yang M, Huang Y, Lan X, Lei C, Qi X, Yang X, Chen H. Copy number variations atLEPRgene locus associated with gene expression and phenotypic traits in Chinese cattle. Anim Sci J 2015; 87:336-43. [DOI: 10.1111/asj.12531] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/11/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Tao Shi
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Yao Xu
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Mingjuan Yang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Yongzhen Huang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Xianyong Lan
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Chuzhao Lei
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| | - Xinglei Qi
- Biyang Bureau of Animal Husbandry of Biyang County; Biyang Henan China
| | - Xiaoming Yang
- Institute of Animal Husbandry and Veterinary; Shanxi Academy of Agricultural Sciences; Taiyuan Shanxi China
| | - Hong Chen
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture; Northwest A&F University; Yangling China
| |
Collapse
|
9
|
Absence of surrogate light chain results in spontaneous autoreactive germinal centres expanding V(H)81X-expressing B cells. Nat Commun 2015; 6:7077. [PMID: 25959489 DOI: 10.1038/ncomms8077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/31/2015] [Indexed: 02/01/2023] Open
Abstract
Random recombination of antibody heavy- and light-chain genes results in a diverse B-cell receptor (BCR) repertoire including self-reactive BCRs. However, tolerance mechanisms that prevent the development of self-reactive B cells remain incompletely understood. The absence of the surrogate light chain, which assembles with antibody heavy chain forming a pre-BCR, leads to production of antinuclear antibodies (ANAs). Here we show that the naive follicular B-cell pool is enriched for cells expressing prototypic ANA heavy chains in these mice in a non-autoimmune background with a broad antibody repertoire. This results in the spontaneous formation of T-cell-dependent germinal centres that are enriched with B cells expressing prototypic ANA heavy chains. However, peripheral tolerance appears maintained by selection thresholds on cells entering the memory B-cell and plasma cell pools, as exemplified by the exclusion of cells expressing the intrinsically self-reactive V(H)81X from both pools.
Collapse
|
10
|
Yim SH, Jung SH, Chung B, Chung YJ. Clinical implications of copy number variations in autoimmune disorders. Korean J Intern Med 2015; 30:294-304. [PMID: 25995659 PMCID: PMC4438283 DOI: 10.3904/kjim.2015.30.3.294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 11/27/2022] Open
Abstract
Human genetic variation is represented by the genetic differences both within and among populations, and most genetic variants do not cause overt diseases but contribute to disease susceptibility and influence drug response. During the last century, various genetic variants, such as copy number variations (CNVs), have been associated with diverse human disorders. Here, we review studies on the associations between CNVs and autoimmune diseases to gain some insight. First, some CNV loci are commonly implicated in various autoimmune diseases, such as Fcγ receptors in patients with systemic lupus erythemoatosus or idiopathic thrombocytopenic purpura and β-defensin genes in patients with psoriasis or Crohn's disease. This means that when a CNV locus is associated with a particular autoimmune disease, we should examine its potential associations with other diseases. Second, interpopulation or interethnic differences in the effects of CNVs on phenotypes exist, including disease susceptibility, and evidence suggests that CNVs are important to understand susceptibility to and pathogenesis of autoimmune diseases. However, many findings need to be replicated in independent populations and different ethnic groups. The validity and reliability of detecting CNVs will improve quickly as genotyping technology advances, which will support the required replication.
Collapse
Affiliation(s)
- Seon-Hee Yim
- Department of Medical Education, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hyun Jung
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Boram Chung
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeun-Jun Chung
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
11
|
Kil LP, Corneth OB, de Bruijn MJ, Asmawidjaja PS, Krause A, Lubberts E, van Loo PF, Hendriks RW. Surrogate light chain expression beyond the pre-B cell stage promotes tolerance in a dose-dependent fashion. J Autoimmun 2015; 57:30-41. [DOI: 10.1016/j.jaut.2014.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/20/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
|
12
|
Ren W, Grimsholm O, Bernardi AI, Höök N, Stern A, Cavallini N, Mårtensson IL. Surrogate light chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by marginal zone B cells. Eur J Immunol 2015; 45:1228-37. [PMID: 25546233 DOI: 10.1002/eji.201444917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 12/08/2014] [Accepted: 12/23/2014] [Indexed: 12/15/2022]
Abstract
Selection of the primary antibody repertoire takes place in pro-/pre-B cells, and subsequently in immature and transitional B cells. At the first checkpoint, μ heavy (μH) chains assemble with surrogate light (SL) chain into a precursor B-cell receptor. In mice lacking SL chain, μH chain selection is impaired, and serum autoantibody levels are elevated. However, whether the development of autoantibody-producing cells is due to an inability of the resultant B-cell receptors to induce central and/or peripheral B-cell tolerance or other factors is unknown. Here, we show that receptor editing is defective, and that a higher proportion of BM immature B cells are prone to undergoing apoptosis. Furthermore, transitional B cells are also more prone to undergoing apoptosis, with a stronger selection pressure to enter the follicular B-cell pool. Those that enter the marginal zone (MZ) B-cell pool escape selection and survive, possibly due to the B-lymphopenia and elevated levels of B-cell activating factor. Moreover, the MZ B cells are responsible for the elevated IgM anti-dsDNA antibody levels detected in these mice. Thus, the SL chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by MZ B cells.
Collapse
Affiliation(s)
- Weicheng Ren
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Buchner M, Swaminathan S, Chen Z, Müschen M. Mechanisms of pre-B-cell receptor checkpoint control and its oncogenic subversion in acute lymphoblastic leukemia. Immunol Rev 2015; 263:192-209. [PMID: 25510278 DOI: 10.1111/imr.12235] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pre-B cells within the bone marrow represent the normal counterpart for most acute lymphoblastic leukemia (ALL). During normal early B-cell development, survival and proliferation signals are dominated by cytokines, particularly interleukin-7 (IL-7) for murine developing B cells. With expression of a functional pre-B-cell receptor (BCR), cytokine signaling is attenuated and the tonic/autonomous pre-BCR signaling pathway provides proliferation as well as differentiation signals. In this review, we first describe checkpoint mechanisms during normal B-cell development and then discuss how genetic lesions in these pathways function as oncogenic mimicries and allow transformed pre-B cells to bypass checkpoint control. We focus on cytokine receptor signaling that is mimicked by activating lesions in receptor subunits or downstream mediators as well as aberrant activation of non-B lymphoid cytokine receptors. Furthermore, we describe the molecular switch from cytokine receptor to pre-BCR signaling, how this pathway is of particular importance for certain ALL subtypes, and how pre-BCR signaling is engaged by genetic lesions, such as BCR-ABL1. We discuss the transcriptional control mechanisms downstream of both cytokine- and pre-BCR signaling and how normal checkpoint control mechanisms are circumvented in pre-B ALL. Finally, we highlight new therapeutic concepts for targeted inhibition of oncogenic cytokine or pre-BCR signaling pathways.
Collapse
Affiliation(s)
- Maike Buchner
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
14
|
Association between HLA-DQA1 gene copy number polymorphisms and susceptibility to rheumatoid arthritis in Chinese Han population. J Genet 2014; 93:215-8. [DOI: 10.1007/s12041-014-0339-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Yuan J, Zhao D, Wu L, Xu X, Pang Y, Zhang J, Ma Y, Liu J, Wang J. FCGR3Bcopy number loss rather than gain is a risk factor for systemic lupus erythematous and lupus nephritis: a meta-analysis. Int J Rheum Dis 2014; 18:392-7. [PMID: 24673810 DOI: 10.1111/1756-185x.12342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jin Yuan
- Department of Dermatology; Huashan Hospital affiliated to Fudan University; Shanghai China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology; Changhai Hospital affiliated to Second Military Medical University; Shanghai China
| | - Lijun Wu
- Department of Digestive Diseases; Huashan Hospital affiliated to Fudan University; Shanghai China
| | - Xia Xu
- Department of Rheumatology and Immunology; Changhai Hospital affiliated to Second Military Medical University; Shanghai China
| | - Yafei Pang
- Department of Rheumatology and Immunology; Changhai Hospital affiliated to Second Military Medical University; Shanghai China
| | - Jun Zhang
- Department of Digestive Diseases; Huashan Hospital affiliated to Fudan University; Shanghai China
| | - Yanyun Ma
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering; School of Life Sciences; Fudan University; Shanghai China
| | - Jie Liu
- Department of Digestive Diseases; Huashan Hospital affiliated to Fudan University; Shanghai China
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering; School of Life Sciences; Fudan University; Shanghai China
| |
Collapse
|
16
|
Zouali M. Transcriptional and metabolic pre-B cell receptor-mediated checkpoints: implications for autoimmune diseases. Mol Immunol 2014; 62:315-20. [PMID: 24602812 DOI: 10.1016/j.molimm.2014.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 02/01/2023]
Abstract
At the pre-B cell stage of lymphocyte development, immunoglobulin light-chains are not yet produced, and heavy-chains are covalently linked to surrogate light-chains composed of VpreB and λ5 to form the pre-B cell receptor (pre-BCR) in a non-covalent association with signal-transducing modules. Even tough the pre-BCR does not have the potential to bind conventional antigens, accumulating evidence indicates that pre-BCR-mediated checkpoints are important both for negative and positive selection of self-reactivity, and that defects in these regulatory nodes may be associated with autoimmune disease. Thus, the transcription factor BACH2, which represents a susceptibility locus for rheumatoid arthritis, has recently emerged as a crucial mediator of negative selection at a pre-BCR checkpoint. The lysosome-associated protein LAPTM5, which is highly expressed in an animal model of Sjögren's syndrome, plays a role in down-modulation of the pre-BCR. Studies of copy number variation in rheumatoid arthritis suggest that a reduced dosage of the VPREB1 gene is involved in disease pathogenesis. Notably, animal models of autoimmune disease exhibit defects in pre-B to naïve B cell checkpoints. Administration of a pre-BCR ligand, which also plays a role in anergy both in human and murine B lymphocytes, ameliorates disease in experimental models of autoimmunity. Further investigation is required to gain a better insight into the molecular mechanisms of pre-BCR-mediated checkpoints and to determine their relevance to autoimmune diseases.
Collapse
Affiliation(s)
- Moncef Zouali
- Inserm, UMR 1132, F-75475 Paris, France; Université Paris Diderot, Sorbone Paris Cité, F-75475 Paris, France.
| |
Collapse
|
17
|
Xu Y, Shi T, Cai H, Zhou Y, Lan X, Zhang C, Lei C, Qi X, Chen H. Associations of MYH3 gene copy number variations with transcriptional expression and growth traits in Chinese cattle. Gene 2013; 535:106-11. [PMID: 24316128 DOI: 10.1016/j.gene.2013.11.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/25/2013] [Accepted: 11/21/2013] [Indexed: 12/22/2022]
Abstract
Copy number variations (CNVs) have been recently recognized as another important genetic variability complementary to single nucleotide polymorphisms (SNPs). Compelling evidence has indicated that CNVs are responsible for phenotypic traits by changing the copy numbers of functional genes. Myosin heavy chain 3 (MYH3) gene is a critical regulatory factor in skeletal muscle development, and has been detected in the CNVs region by comparative genomic hybridization (CGH) array. This study was conducted to validate and detect the distribution of MYH3 copy numbers (relative to Angus cattle) in four Chinese cattle breeds (NY, QC, LX, and CY), and further to investigate the associations of the copy number changes with its transcriptional expression and cattle growth traits. Substantial genetic differences of MYH3 copy numbers were identified between NY and the other three breeds (P<0.01). The copy numbers of MYH3 gene presented the positive correlations with the transcript level of MYH3 gene in both fetal and adult skeletal muscles (P<0.05). Statistical analysis revealed that CNVs of MYH3 gene were significantly associated with growth traits of NY cattle, and the individuals with copy number gain showed better phenotypes than the loss and/or median groups (P<0.05). This study firstly attempted to establish the correlations between CNVs of candidate genes and growth traits, and our results suggested that the CNVs of MYH3 gene may be utilized as the potential markers for economic traits in selection breeding programs of Chinese cattle.
Collapse
Affiliation(s)
- Yao Xu
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Tao Shi
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Hanfang Cai
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yang Zhou
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Xinglei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Henan 463700, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Kim JH, Jung SH, Bae JS, Lee HS, Yim SH, Park SY, Bang SY, Hu HJ, Shin HD, Bae SC, Chung YJ. Deletion variants of RABGAP1L, 10q21.3, and C4 are associated with the risk of systemic lupus erythematosus in Korean women. ACTA ACUST UNITED AC 2013; 65:1055-63. [PMID: 23335107 DOI: 10.1002/art.37854] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 12/27/2012] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Several copy number variations (CNVs) have been found to be associated with systemic lupus erythematosus (SLE) through the target gene approach. However, genome-wide features of CNVs and their role in the risk of SLE remain unknown. The aim of this study was to identify SLE-associated CNVs in Korean women. METHODS Genome-wide assessments of CNVs were performed in 382 SLE patients and 191 control subjects, using an Illumina HumanHap610 BeadChip genotyping platform. SLE-associated CNV regions that were identified by genome-wide association study (GWAS) were replicated in quantitative polymerase chain reaction (PCR) and deletion-typing PCR analyses in an independent sample set comprising 564 SLE patients and 511 control subjects. RESULTS Of 144 common CNV regions, 3 deletion-type CNV regions in 1q25.1, 8q23.3, and 10q21.3 were found to be significantly associated with SLE by GWAS analysis. In the independent replication, the CNV regions in 1q25.1 (RABGAP1L) and 10q21.3 were successfully replicated (odds ratio [OR] 1.30, P=0.038 and OR 1.90, P=3.6×10(-5), respectively), and the associations were confirmed again by deletion-typing PCR. The CNV region in the C4 gene, which showed a potential association in the discovery stage, was included in the replication analysis and was found to be significantly associated with the risk of SLE (OR 1.88, P=0.01). Through deletion-typing PCR, the exact sizes and breakpoint sequences of the deletions were defined. Individuals with the deletions in all 3 loci (RABGAP1L, 10q21.3, and C4) had a much higher risk of SLE than did those without any deletions in the 3 loci (OR 5.52, P=3.9×10(-4)). CONCLUSION These CNV regions can be useful to identify the pathogenic mechanisms of SLE, and might be used to more accurately predict the risk of SLE by taking into consideration their synergistic effects on disease susceptibility.
Collapse
Affiliation(s)
- Ji-Hong Kim
- Catholic University of Korea, and Department of Rheumatology, Hanyang University Hospital of Rheumatic Diseases, Haengdang-dong, Seongdong-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim SY, Kim JH, Chung YJ. Effect of Combining Multiple CNV Defining Algorithms on the Reliability of CNV Calls from SNP Genotyping Data. Genomics Inform 2012; 10:194-9. [PMID: 23166530 PMCID: PMC3492655 DOI: 10.5808/gi.2012.10.3.194] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 01/11/2023] Open
Abstract
In addition to single-nucleotide polymorphisms (SNP), copy number variation (CNV) is a major component of human genetic diversity. Among many whole-genome analysis platforms, SNP arrays have been commonly used for genomewide CNV discovery. Recently, a number of CNV defining algorithms from SNP genotyping data have been developed; however, due to the fundamental limitation of SNP genotyping data for the measurement of signal intensity, there are still concerns regarding the possibility of false discovery or low sensitivity for detecting CNVs. In this study, we aimed to verify the effect of combining multiple CNV calling algorithms and set up the most reliable pipeline for CNV calling with Affymetrix Genomewide SNP 5.0 data. For this purpose, we selected the 3 most commonly used algorithms for CNV segmentation from SNP genotyping data, PennCNV, QuantiSNP; and BirdSuite. After defining the CNV loci using the 3 different algorithms, we assessed how many of them overlapped with each other, and we also validated the CNVs by genomic quantitative PCR. Through this analysis, we proposed that for reliable CNV-based genomewide association study using SNP array data, CNV calls must be performed with at least 3 different algorithms and that the CNVs consistently called from more than 2 algorithms must be used for association analysis, because they are more reliable than the CNVs called from a single algorithm. Our result will be helpful to set up the CNV analysis protocols for Affymetrix Genomewide SNP 5.0 genotyping data.
Collapse
Affiliation(s)
- Soon-Young Kim
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea School of Medicine, Seoul 137-701, Korea. ; Department of Microbiology, The Catholic University of Korea School of Medicine, Seoul 137-701, Korea
| | | | | |
Collapse
|
20
|
Shin GW, Jung SH, Yim SH, Chung B, Yeol Jung G, Chung YJ. Stuffer-free multiplex ligation-dependent probe amplification based on conformation-sensitive capillary electrophoresis: a novel technology for robust multiplex determination of copy number variation. Electrophoresis 2012; 33:3052-61. [PMID: 22965760 DOI: 10.1002/elps.201200334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 07/18/2012] [Accepted: 07/23/2012] [Indexed: 01/12/2023]
Abstract
Developing diagnostic tools based on the application of known disease/phenotype-associated copy number variations (CNVs) requires the capacity to measure CNVs in a multiplex format with sufficient reliability and methodological simplicity. In this study, we developed a reliable and user-friendly multiplex CNV detection method, termed stuffer-free MLPA-CE-SSCP, that combines a variation of multiplex ligation-dependent probe amplification (MLPA) with CE-SSCP. In this variation, MLPA probes were designed without the conventionally required stuffer sequences. To separate the similar-sized stuffer-free MLPA products, we adopted CE-SSCP rather than length-dependent conventional CE analysis. An examination of the genomic DNA from five cell lines known to vary in X-chromosome copy number (1-5) revealed that copy number determinations using stuffer-free MLPA-CE-SSCP were more accurate than those of conventional MLPA, and the CV of the measured copy numbers was significantly lower. Applying our system to measure the CNVs on autosomes between two HapMap individuals, we found that all peaks for CNV targets showed the expected copy number changes. Taken together, our results indicate that this new strategy can overcome the limitations of conventional MLPA, which are mainly related to long probe length and difficulties of probe preparation.
Collapse
Affiliation(s)
- Gi Won Shin
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Jung SH, Lee A, Yim SH, Hu HJ, Choe C, Chung YJ. Simultaneous copy number gains of NUPR1 and ERBB2 predicting poor prognosis in early-stage breast cancer. BMC Cancer 2012; 12:382. [PMID: 22938721 PMCID: PMC3489802 DOI: 10.1186/1471-2407-12-382] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 08/09/2012] [Indexed: 12/30/2022] Open
Abstract
Background The full extent of chromosomal alterations and their biological implications in early breast carcinogenesis has not been well examined. In this study, we aimed to identify chromosomal alterations associated with poor prognosis in early-stage breast cancers (EBC). Methods A total of 145 EBCs (stage I and II) were examined in this study. We analyzed copy number alterations in a discovery set of 48 EBCs using oligoarray-comparative genomic hybridization. In addition, the recurrently altered regions (RARs) associated with poor prognosis were validated using an independent set of 97 EBCs. Results A total of 23 RARs were defined in the discovery set. Six were commonly detected in both stage I and II groups (> 50%), suggesting their connection with early breast tumorigenesis. There were gains on 1q21.2-q21.3, 8q24.13, 8q24.13-21, 8q24.3, and 8q24.3 and a loss on 8p23.1-p22. Among the 23 RARs, copy number gains on 16p11.2 (NUPR1) and 17q12 (ERBB2) showed a significant association with poor survival (P = 0.0186 and P = 0.0186, respectively). The patients simultaneously positive for both gains had a significantly worse prognosis (P = 0.0001). In the independent replication, the patients who were double-positive for NUPR1-ERBB2 gains also had a significantly poorer prognosis on multivariate analysis (HR = 7.31, 95% CI 2.65-20.15, P = 0.0001). Conclusions The simultaneous gain of NUPR1 and ERBB2 can be a significant predictor of poor prognosis in EBC. Our study will help to elucidate the molecular mechanisms underlying early-stage breast cancer tumorigenesis. This study also highlights the potential for using combinations of copy number alterations as prognosis predictors for EBC.
Collapse
Affiliation(s)
- Seung-Hyun Jung
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Banpo-dong, Socho-gu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
22
|
Bergboer JGM, Umićević-Mirkov M, Fransen J, den Heijer M, Franke B, van Riel PLCM, Schalkwijk J, Coenen MJH. A replication study of the association between rheumatoid arthritis and deletion of the late cornified envelope genes LCE3B and LCE3C. PLoS One 2012; 7:e32045. [PMID: 22384135 PMCID: PMC3285664 DOI: 10.1371/journal.pone.0032045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/18/2012] [Indexed: 11/29/2022] Open
Abstract
Objective Two recent studies, in a Spanish and a Chinese population, point to an association between rheumatoid arthritis (RA) risk and the deletion of the Late Cornified Envelope (LCE) 3B and 3C genes (LCE3C_LCE3B-del), a known risk factor for psoriasis. We aimed to replicate these studies in a large Dutch cohort. Methods 1039 RA cases and 759 controls were genotyped for LCE3C_LCE3B-del. Association analysis was performed for the complete cohort and after stratification for the serologic markers anti-cyclic citrullinated peptide and rheumatoid factor. A meta-analysis was performed combining our data with the Spanish and Chinese datasets, resulting in an analysis including 2466 RA cases and 2438 controls. Results In the Dutch cohort we did not observe a significant association of LCE3C_LCE3B-del (p = 0.093) with RA risk. A stratified analysis for the serologic positive and negative group did not show an association between the genetic variant and disease risk, either. The meta-analysis, however, confirmed a significant association (p<0.0001, OR = 1.31, 95% confidence interval 1.16–1.47). Conclusion Our meta-analysis confirms the association of the LCE3 deletion with RA, suggesting that LCE3C_LCE3B-del is a common risk factor for (auto)immune diseases.
Collapse
Affiliation(s)
- Judith G. M. Bergboer
- Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Maša Umićević-Mirkov
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jaap Fransen
- Department of Rheumatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Martin den Heijer
- Department of Endocrinology and Department of Epidemiology and Biostatistics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Piet L. C. M. van Riel
- Department of Rheumatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| | | |
Collapse
|
23
|
Shin SH, Shin GW, Yim SH, Jung SH, Jung GY, Chung YJ. Strategy for high-fidelity multiplex DNA copy number assay system using capillary electrophoresis devices. Electrophoresis 2011; 32:1837-43. [DOI: 10.1002/elps.201100093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/13/2011] [Accepted: 03/15/2011] [Indexed: 01/31/2023]
|