1
|
Tutunea-Fatan E, Arumugarajah S, Suri RS, Edgar CR, Hon I, Dikeakos JD, Gunaratnam L. Sensing Dying Cells in Health and Disease: The Importance of Kidney Injury Molecule-1. J Am Soc Nephrol 2024; 35:795-808. [PMID: 38353655 PMCID: PMC11164124 DOI: 10.1681/asn.0000000000000334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra R. Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ingrid Hon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Src Family Protein Kinase Controls the Fate of B Cells in Autoimmune Diseases. Inflammation 2020; 44:423-433. [PMID: 33037966 DOI: 10.1007/s10753-020-01355-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/07/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
There are more than 80 kinds of autoimmune diseases known at present, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), inflammatory bowel disease (IBD), as well as other disorders. Autoimmune diseases have a characteristic of immune responses directly attacking own tissues, leading to systematic inflammation and subsequent tissue damage. B cells play a vital role in the development of autoimmune diseases and differentiate into plasma cells or memory B cells to secrete high-affinity antibody or provide long-lasting function. Drugs targeting B cells show good therapeutic effects for the treatment of autoimmune diseases, such as rituximab (anti-CD20 antibody). Src family protein kinases (SFKs) are believed to play important roles in a variety of cellular functions such as growth, proliferation, and differentiation of B cell via B cell antigen receptor (BCR). Lck/Yes-related novel protein tyrosine kinase (LYN), BLK (B lymphocyte kinase), and Fyn are three different kinds of SFKs mainly expressed in B cells. LYN has a dual role in the BCR signal. On the one hand, positive signals are beneficial to the development and maturation of B cells. On the other hand, LYN can also inhibit excessively activated B cells. BLK is involved in the proliferation, differentiation, and immune tolerance of B lymphocytes, and further affects the function of B cells, which may lead to autoreactive or regulatory cellular responses, increasing the risk of autoimmune diseases. Fyn may affect the development of autoimmune disorders via the differentiation of B cells in the early stage of B cell development. This article reviews the recent advances of SFKs in B lymphocytes in autoimmune diseases.
Collapse
|
3
|
Kim D, Lee SA, Moon H, Kim K, Park D. The Tim gene family in efferocytosis. Genes Genomics 2020; 42:979-986. [PMID: 32648232 DOI: 10.1007/s13258-020-00969-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
One of the key features of the plasma membrane is the asymmetrical distribution of phospholipids across it. Especially, phosphatidylserine (PS) exclusively locates on its inner leaflet. Thus, the exposure of PS on the surface of cells could function as a signal initiating various cellular processes such as phagocytosis of apoptotic cells called efferocytosis, blood clotting, muscle formation, and viral entry. Indeed, PS on apoptotic cells stimulates phagocytes to engulf them and functions as an essential ligand for efferocytosis. Due to the importance of PS in efferocytosis, the existence of the PS receptor had been conceived. However, the PS receptor had not been revealed for a long time. Thus, the first identification of the PS receptor was significant excitement. Tim-4, a member of the T cell immunoglobulin and mucin domain containing family of genes, was one of PS receptors which first identified and received the greatest attention due to its expression in macrophages and relevance to autoimmune and allergic diseases. This review will serve to provide a comprehensive overview of Tim proteins as PS receptors.
Collapse
Affiliation(s)
- Deokhwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Sang-Ah Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hyunji Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Kwanhyeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea. .,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
4
|
TIM-1 Ubiquitination Mediates Dengue Virus Entry. Cell Rep 2018; 23:1779-1793. [DOI: 10.1016/j.celrep.2018.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/06/2018] [Accepted: 04/02/2018] [Indexed: 01/01/2023] Open
|
5
|
Ismail OZ, Sriranganathan S, Zhang X, Bonventre JV, Zervos AS, Gunaratnam L. Tctex-1, a novel interaction partner of Kidney Injury Molecule-1, is required for efferocytosis. J Cell Physiol 2018; 233:6877-6895. [PMID: 29693725 DOI: 10.1002/jcp.26578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/01/2018] [Indexed: 02/04/2023]
Abstract
Kidney injury molecule-1 (KIM-1) is a phosphatidylserine receptor that is specifically upregulated on proximal tubular epithelial cells (PTECs) during acute kidney injury and mitigates tissue damage by mediating efferocytosis (the phagocytic clearance of apoptotic cells). The signaling molecules that regulate efferocytosis in TECs are not well understood. Using a yeast two-hybrid screen, we identified the dynein light chain protein, Tctex-1, as a novel KIM-1-interacting protein. Immunoprecipitation and confocal imaging studies suggested that Tctex-1 associates with KIM-1 in cells at baseline, but, dissociates from KIM-1 within 90 min of initiation of efferocytosis. Interfering with actin or microtubule polymerization interestingly prevented the dissociation of KIM-1 from Tctex-1. Moreover, the subcellular localization of Tctex-1 changed from being microtubule-associated to mainly cytosolic upon expression of KIM-1. Short hairpin RNA-mediated silencing of endogenous Tctex-1 in cells significantly inhibited efferocytosis to levels comparable to that of knock down of KIM-1 in the same cells. Importantly, Tctex-1 was not involved in the delivery of KIM-1 to the cell-surface. On the other hand, KIM-1 expression significantly inhibited the phosphorylation of Tctex-1 at threonine 94 (T94), a post-translational modification which is known to disrupt the binding of Tctex-1 to dynein on microtubules. In keeping with this, we found that KIM-1 bound less efficiently to the phosphomimic (T94E) mutant of Tctex-1 compared to wild type Tctex-1. Surprisingly, expression of Tctex-1 T94E did not influence KIM-1-mediated efferocytosis. Our studies uncover a previously unknown role for Tctex-1 in KIM-1-dependent efferocytosis in epithelial cells.
Collapse
Affiliation(s)
- Ola Z Ismail
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada
| | - Saranga Sriranganathan
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada
| | - Xizhong Zhang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Antonis S Zervos
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida
| | - Lakshman Gunaratnam
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, London, Western University, Ontario, Canada
| |
Collapse
|
6
|
Determinants in the Ig Variable Domain of Human HAVCR1 (TIM-1) Are Required To Enhance Hepatitis C Virus Entry. J Virol 2018; 92:JVI.01742-17. [PMID: 29321304 DOI: 10.1128/jvi.01742-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is the leading cause of chronic hepatitis in humans. Several host molecules participate in HCV cell entry, but this process remains unclear. The complete unraveling of the HCV entry process is important to further understand viral pathogenesis and develop therapeutics. Human hepatitis A virus (HAV) cellular receptor 1 (HAVCR1), CD365, also known as TIM-1, functions as a phospholipid receptor involved in cell entry of several enveloped viruses. Here, we studied the role of HAVCR1 in HCV infection. HAVCR1 antibody inhibited entry in a dose-dependent manner. HAVCR1 soluble constructs neutralized HCV, which did not require the HAVCR1 mucinlike region and was abrogated by a mutation of N to A at position 94 (N94A) in the Ig variable (IgV) domain phospholipid-binding pocket, indicating a direct interaction of the HAVCR1 IgV domain with HCV virions. However, knockout of HAVCR1 in Huh7 cells reduced but did not prevent HCV growth. Interestingly, the mouse HAVCR1 ortholog, also a phospholipid receptor, did not enhance infection and a soluble form failed to neutralize HCV, although replacement of the mouse IgV domain with the human HAVCR1 IgV domain restored the enhancement of HCV infection. Mutations in the cytoplasmic tail revealed that direct HAVCR1 signaling is not required to enhance HCV infection. Our data show that the phospholipid-binding function and other determinant(s) in the IgV domain of human HAVCR1 enhance HCV infection. Although the exact mechanism is not known, it is possible that HAVCR1 facilitates entry by stabilizing or enhancing attachment, leading to direct interactions with specific receptors, such as CD81.IMPORTANCE Hepatitis C virus (HCV) enters cells through a multifaceted process. We identified the human hepatitis A virus cellular receptor 1 (HAVCR1), CD365, also known as TIM-1, as a facilitator of HCV entry. Antibody blocking and silencing or knockout of HAVCR1 in hepatoma cells reduced HCV entry. Our findings that the interaction of HAVCR1 with HCV early during infection enhances entry but is not required for infection support the hypothesis that HAVCR1 facilitates entry by stabilizing or enhancing virus binding to the cell surface membrane and allowing the correct virus-receptor positioning for interaction with the main HCV receptors. Furthermore, our data show that in addition to the phospholipid-binding function of HAVCR1, the enhancement of HCV infection involves other determinants in the IgV domain of HAVCR1. These findings expand the repertoire of molecules that HCV uses for cell entry, adding to the already complex mechanism of HCV infection and pathogenesis.
Collapse
|
7
|
Gorman JV, Colgan JD. Acute stimulation generates Tim-3-expressing T helper type 1 CD4 T cells that persist in vivo and show enhanced effector function. Immunology 2018; 154:418-433. [PMID: 29315553 DOI: 10.1111/imm.12890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022] Open
Abstract
T-cell immunoglobulin and mucin domain 3 (Tim-3) is a surface receptor expressed by T helper type 1 (Th1) effector CD4 T cells, which are critical for defence against intracellular pathogens and have been implicated in autoimmune disease. Previous studies showed that Tim-3 expression makes Th1 cells more susceptible to apoptosis and also marks functionally impaired T cells that arise due to chronic stimulation. However, other studies suggested that Tim-3-expressing Th1 cells do not always have these properties. To further define the relationship between Tim-3 and Th1 cell function, we analysed the characteristics of Th1 cells that expressed Tim-3 in response to brief stimulation in vitro or an acute viral infection in vivo. As expected, cultured CD4 T cells began expressing Tim-3 during Th1 differentiation and secondary stimulation generated Tim-3- and Tim-3+ fractions that were separated and further analysed. When injected into naive mice, Tim-3+ cells down-regulated Tim-3 and survived equally well compared with Tim-3- cells. Further, Tim-3- and Tim-3+ Th1 cells had similar functional responses when transferred into naive mice that were subsequently infected with lymphocytic choriomeningitis virus (LCMV). Cultured Th1 cells that expressed Tim-3 following T-cell receptor stimulation had a greater capacity to express signature Th1 cytokines than their Tim-3- counterparts and showed differential expression of genes that regulate CD4 T-cell function. Consistent with these findings, Tim-3+ Th1 cells generated in response to LCMV infection displayed augmented effector function relative to Tim-3- cells. These results suggest that Tim-3 expression by Th1 cells responding to acute stimulation can mark cells that are functionally competent and have an augmented ability to produce cytokines.
Collapse
Affiliation(s)
- Jacob V Gorman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John D Colgan
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 2016; 269:44-59. [PMID: 26683144 DOI: 10.1111/imr.12376] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphatidylserine recognition receptors are a highly diverse set of receptors grouped by their ability to recognize the 'eat-me' signal phosphatidylserine on apoptotic cells. Most of the phosphatidylserine recognition receptors dampen inflammation by inducing the production of anti-inflammatory mediators during the phagocytosis of apoptotic corpses. However, many phosphatidylserine receptors are also capable of recognizing other ligands, with some receptors being categorized as scavenger receptors. It is now appreciated that these receptors can elicit different downstream events for particular ligands. Therefore, how phosphatidylserine recognition receptors mediate specific signals during recognition of apoptotic cells versus other ligands, and how this might help regulate the inflammatory state of a tissue is an important question that is not fully understood. Here, we revisit the work on signaling downstream of the phosphatidylserine recognition receptor BAI1, and evaluate how these and other signaling modules mediate signaling downstream from other receptors, including Stabilin-2, MerTK, and αvβ5. We also propose the concept that phosphatidylserine recognition receptors could be viewed as a subset of scavenger receptors that are capable of eliciting anti-inflammatory responses to apoptotic cells.
Collapse
Affiliation(s)
- Kristen K Penberthy
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
9
|
Immune Regulation and Antitumor Effect of TIM-1. J Immunol Res 2016; 2016:8605134. [PMID: 27413764 PMCID: PMC4931049 DOI: 10.1155/2016/8605134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/10/2016] [Accepted: 04/28/2016] [Indexed: 01/25/2023] Open
Abstract
T cells play an important role in antitumor immunity, and the T cell immunoglobulin domain and the mucin domain protein-1 (TIM-1) on its surface, as a costimulatory molecule, has a strong regulatory effect on T cells. TIM-1 can regulate and enhance type 1 immune response of tumor association. Therefore, TIM-1 costimulatory pathways may be a promising therapeutic target in future tumor immunotherapy. This review describes the immune regulation and antitumor effect of TIM-1.
Collapse
|
10
|
Abstract
Polymorphisms in the T cell (or transmembrane) immunoglobulin and mucin
domain 1 ( TIM-1) gene, particularly in the mucin
domain, have been associated with atopy and allergic diseases in mice and human.
Genetic- and antibody-mediated studies revealed that Tim-1 functions as a
positive regulator of Th2 responses, while certain antibodies to Tim-1 can
exacerbate or reduce allergic lung inflammation. Tim-1 can also positively
regulate the function of B cells, NKT cells, dendritic cells and mast cells.
However, the precise molecular mechanisms by which Tim-1 modulates immune cell
function are currently unknown. In this study, we have focused on defining
Tim-1-mediated signaling pathways that enhance mast cell activation through the
high affinity IgE receptor (FceRI). Using a Tim-1 mouse model lacking the mucin
domain (Tim-1 Dmucin), we show for the first time that the
polymorphic Tim-1 mucin region is dispensable for normal mast cell activation.
We further show that Tim-4 cross-linking of Tim-1 enhances select signaling
pathways downstream of FceRI in mast cells, including mTOR-dependent signaling,
leading to increased cytokine production but without affecting
degranulation.
Collapse
Affiliation(s)
- Binh Phong
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, USA.,Immunology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
11
|
Ismail OZ, Zhang X, Bonventre JV, Gunaratnam L. G protein α 12 (Gα 12) is a negative regulator of kidney injury molecule-1-mediated efferocytosis. Am J Physiol Renal Physiol 2015; 310:F607-F620. [PMID: 26697979 DOI: 10.1152/ajprenal.00169.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023] Open
Abstract
Kidney injury molecule-1 (KIM-1) is a receptor for the "eat me" signal, phosphatidylserine, on apoptotic cells. The specific upregulation of KIM-1 by injured tubular epithelial cells (TECs) enables them to clear apoptotic cells (also known as efferocytosis), thereby protecting from acute kidney injury. Recently, we uncovered that KIM-1 binds directly to the α-subunit of heterotrimeric G12 protein (Gα12) and inhibits its activation by reactive oxygen species during renal ischemia-reperfusion injury (Ismail OZ, Zhang X, Wei J, Haig A, Denker BM, Suri RS, Sener A, Gunaratnam L. Am J Pathol 185: 1207-1215, 2015). Here, we investigated the role that Gα12 plays in KIM-1-mediated efferocytosis by TECs. We showed that KIM-1 remains bound to Gα12 and suppresses its activity during phagocytosis. When we silenced Gα12 expression using small interefering RNA, KIM-1-mediated engulfment of apoptotic cells was increased significantly; in contrast overexpression of constitutively active Gα12 (QLGα12) resulted in inhibition of efferocytosis. Inhibition of RhoA, a key effector of Gα12, using a chemical inhibitor or expression of dominant-negative RhoA, had the same effect as inhibition of Gα12 on efferocytosis. Consistent with this, silencing Gα12 suppressed active RhoA in KIM-1-expressing cells. Finally, using primary TECs from Kim-1+/+ and Kim-1-/- mice, we confirmed that engulfment of apoptotic cells requires KIM-1 expression and that silencing Gα12 enhanced efferocytosis by primary TECs. Our data reveal a previously unknown role for Gα12 in regulating efferocytosis and that renal TECs require KIM-1 to mediate this process. These results may have therapeutic implications given the known harmful role of Gα12 in acute kidney injury.
Collapse
Affiliation(s)
- Ola Z Ismail
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada.,Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Xizhong Zhang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Joseph V Bonventre
- Renal Division and Biomedical Engineering Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Lakshman Gunaratnam
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; .,Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
12
|
Hosseini H, Li Y, Kanellakis P, Tay C, Cao A, Tipping P, Bobik A, Toh BH, Kyaw T. Phosphatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes. Cardiovasc Res 2015; 106:443-452. [DOI: 10.1093/cvr/cvv037] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
13
|
Abstract
Tim-3 is a member of the T cell immunoglobulin and mucin domain (Tim) family of proteins, which are expressed by several cell types in the immune system, including CD4 and CD8 T cells activated under certain conditions. These molecules are generally thought to act as receptors for multiple ligands and thus to function by engaging intracellular signaling pathways in a ligand-dependent manner. In recent years, the function of the Tim-3 protein has been studied in some detail, particularly with respect to its role in the regulation of CD4 and CD8 T cell responses. Here, we review the structural features of Tim-3, known ligands for this molecule and the links established between Tim-3 and signal transduction pathways. In addition, we review the current literature regarding the role of Tim-3 in the regulation of effector responses by CD4 and CD8 T cells. Overall, findings published thus far strongly support the conclusion that Tim-3 functions to inhibit T cell responses, particularly under conditions involving chronic stimulation. Conversely, some reports have provided evidence that Tim-3 can stimulate T cells under conditions involving acute stimulation, suggesting that the role of Tim-3 may vary depending on context. Further study of Tim-3 is likely to advance our understanding of how CD4 and CD8 T cell responses are regulated and could uncover novel approaches for manipulating T cell function for therapeutic benefit.
Collapse
|
14
|
Regulation of T cell trafficking by the T cell immunoglobulin and mucin domain 1 glycoprotein. Trends Mol Med 2014; 20:675-84. [DOI: 10.1016/j.molmed.2014.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/30/2022]
|
15
|
Abstract
UNLABELLED T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral membrane. While it is known that the PtdSer binding is essential for the PVEER function of TIM-1, TIM-3 shares this binding activity but does not enhance virus entry. No comprehensive studies have been done to characterize the other domains of TIM-1. In this study, using a variety of chimeric proteins and deletion mutants, we define the features necessary for a functional PVEER. With these features in mind, we generated a TIM-1 mimic using functionally similar domains from other proteins. This mimic, like TIM-1, effectively enhanced transduction. These studies provide insight into the key features necessary for PVEERs and will allow for more effective identification of unknown PVEERs.
Collapse
|
16
|
Gorman JV, Starbeck-Miller G, Pham NLL, Traver GL, Rothman PB, Harty JT, Colgan JD. Tim-3 directly enhances CD8 T cell responses to acute Listeria monocytogenes infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:3133-42. [PMID: 24567532 DOI: 10.4049/jimmunol.1302290] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
T cell Ig and mucin domain (Tim) 3 is a surface molecule expressed throughout the immune system that can mediate both stimulatory and inhibitory effects. Previous studies have provided evidence that Tim-3 functions to enforce CD8 T cell exhaustion, a dysfunctional state associated with chronic stimulation. In contrast, the role of Tim-3 in the regulation of CD8 T cell responses to acute and transient stimulation remains undefined. To address this knowledge gap, we examined how Tim-3 affects CD8 T cell responses to acute Listeria monocytogenes infection. Analysis of wild-type (WT) mice infected with L. monocytogenes revealed that Tim-3 was transiently expressed by activated CD8 T cells and was associated primarily with acquisition of an effector phenotype. Comparison of responses to L. monocytogenes by WT and Tim-3 knockout (KO) mice showed that the absence of Tim-3 significantly reduced the magnitudes of both primary and secondary CD8 T cell responses, which correlated with decreased IFN-γ production and degranulation by Tim-3 KO cells stimulated with peptide Ag ex vivo. To address the T cell-intrinsic role of Tim-3, we analyzed responses to L. monocytogenes infection by WT and Tim-3 KO TCR-transgenic CD8 T cells following adoptive transfer into a shared WT host. In this setting, the accumulation of CD8 T cells and the generation of cytokine-producing cells were significantly reduced by the lack of Tim-3, demonstrating that this molecule has a direct effect on CD8 T cell function. Combined, our results suggest that Tim-3 can mediate a stimulatory effect on CD8 T cell responses to an acute infection.
Collapse
Affiliation(s)
- Jacob V Gorman
- Interdisciplinary Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | | | | | | | | | | | | |
Collapse
|
17
|
Curtiss ML, Gorman JV, Businga TR, Traver G, Singh M, Meyerholz DK, Kline JN, Murphy AJ, Valenzuela DM, Colgan JD, Rothman PB, Cassel SL. Tim-1 regulates Th2 responses in an airway hypersensitivity model. Eur J Immunol 2012; 42:651-61. [PMID: 22144095 DOI: 10.1002/eji.201141581] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
T-cell immunoglobulin mucin-1 (Tim-1) is a transmembrane protein postulated to be a key regulator of Th2-type immune responses. This hypothesis is based in part upon genetic studies associating Tim-1 polymorphisms in mice with a bias toward airway hyperrespon-siveness (AHR) and the development of Th2-type CD4(+) T cells. Tim-1 expressed by Th2 CD4(+) T cells has been proposed to function as a co-stimulatory molecule. Tim-1 is also expressed by B cells, macrophages, and dendritic cells, but its role in responses by these cell types has not been firmly established. Here, we generated Tim-1-deficient mice to determine the role of Tim-1 in a murine model of allergic airway disease that depends on the development and function of Th2 effector cells and results in the generation of AHR. We found antigen-driven recruitment of inflammatory cells into airways is increased in Tim-1-deficient mice relative to WT mice. In addition, we observed increased antigen-specific cytokine production by splenocytes from antigen-sensitized Tim-1-deficient mice relative to those from controls. These data support the conclusion that Tim-1 functions in pathways that suppress recruitment of inflammatory cells into the airways and the generation or activity of CD4(+) T cells.
Collapse
Affiliation(s)
- Miranda L Curtiss
- University of Iowa Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rennert PD. Novel roles for TIM-1 in immunity and infection. Immunol Lett 2011; 141:28-35. [PMID: 21911007 DOI: 10.1016/j.imlet.2011.08.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/12/2011] [Accepted: 08/27/2011] [Indexed: 10/17/2022]
Abstract
T cell, immunoglobulin domain and mucin domain-1 (TIM-1) is the nominant member of a small family of related proteins that regulate immune cell activities. TIM-1 was initially characterized in a mouse congenic analysis of Th2 T cell responses and related pathology. Data accumulated to date suggest that TIM-1 regulates effector T cell function, and may play distinct roles in the activities of B cells, invariant NKT cells and epithelial cells. In addition, a variety of ligands for TIM-1 have been proposed. In this review I discuss recent data that have accumulated on the function of TIM-1, propose a model to explain how TIM-1 regulates effector T cell activity through recognition of distinct ligands, and review others functions of this increasingly fascinating protein. Of considerable interest are the novel findings that TIM-1 mediates virus entry and virulence.
Collapse
Affiliation(s)
- Paul D Rennert
- Department of Molecular Discovery and Immunobiology, Biogen Idec Inc., Cambridge, MA 02142, United States.
| |
Collapse
|