1
|
Zheng Z, Wang JB, Sun R, Wang N, Weng XQ, Xu TY, Fu D, Feng Y, Xu PP, Cheng S, Wang L, Zhao Y, Qu B, Huang CX, Zhao WL. Dual targeting PD-L1 and 4-1BB to overcome dendritic cell-mediated lenalidomide resistance in follicular lymphoma. Signal Transduct Target Ther 2025; 10:29. [PMID: 39828715 PMCID: PMC11743790 DOI: 10.1038/s41392-024-02105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025] Open
Abstract
Immunomodulatory agent lenalidomide is effective in treating follicular lymphoma (FL). We conducted the first trial of immunotherapy rituximab plus lenalidomide in newly diagnosed FL in China (NCT03715309). One-hundred and fifteen patients were enrolled and treated with rituximab 375 mg/m2 intravenously on day 0 and lenalidomide 25 mg orally on day 1-10 for 6 cycles of induction treatment, as well as lenalidomide for 6 cycles and rituximab for 8 cycles of maintenance treatment. We found that inferior progression-free survival of the patients was significantly associated with elevated serum β2m and lymph node >6 cm, linking to decreased lymphoma cell autophagy and dendritic cell infiltration within the tumor microenvironment. PU.1 transcriptionally downregulated PD-L1 (Programmed death ligand 1) expression and upregulated 4-1BBL (4-1BB ligand) expression, increased lymphoma cell autophagy and dendritic cell maturation via PD-1/PD-L1 and 4-1BB/4-1BBL interaction. In vitro in co-culture system and in vivo in murine xenograft model, knockdown of PU.1 induced lenalidomide resistance, but sensitized FL cells to bi-specific PD-L1/4-1BB antibody or combined treatment of PD-L1 inhibitor and 4-1BB agonist. Collectively, PU.1 is essential in immunomodulatory effect of FL through PD-1/PD-L1- and 4-1BB/4-1BBL-mediated microenvironmental modulation. Dual targeting PD-L1 and 4-1BB could be an alternative immunotherapeutic strategy in the chemo-free era of FL treatment.
Collapse
Affiliation(s)
- Zhong Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Biao Wang
- Department of Laboratory Medicine, Shanghai RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Yuan Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Qu
- Department of Laboratory Medicine, Shanghai RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Xin Huang
- Department of Immunobiology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
2
|
Wenthe J, Eriksson E, Hellström AC, Moreno R, Ullenhag G, Alemany R, Lövgren T, Loskog A. Immunostimulatory gene therapy targeting CD40, 4-1BB and IL-2R activates DCs and stimulates antigen-specific T-cell and NK-cell responses in melanoma models. J Transl Med 2023; 21:506. [PMID: 37501121 PMCID: PMC10373363 DOI: 10.1186/s12967-023-04374-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND The activation of dendritic cells (DCs) is pivotal for generating antigen-specific T-cell responses to eradicate tumor cells. Hence, immunotherapies targeting this interplay are especially intriguing. Moreover, it is of interest to modulate the tumor microenvironment (TME), as this harsh milieu often impairs adaptive immune responses. Oncolytic viral therapy presents an opportunity to overcome the immunosuppression in tumors by destroying tumor cells and thereby releasing antigens and immunostimulatory factors. These effects can be further amplified by the introduction of transgenes expressed by the virus. METHODS Lokon oncolytic adenoviruses (LOAd) belong to a platform of chimeric serotype Ad5/35 viruses that have their replication restricted to tumor cells, but the expression of transgenes is permitted in all infected cells. LOAd732 is a novel oncolytic adenovirus that expresses three essential immunostimulatory transgenes: trimerized membrane-bound CD40L, 4-1BBL and IL-2. Transgene expression was determined with flow cytometry and ELISA and the oncolytic function was evaluated with viability assays and xenograft models. The activation profiles of DCs were investigated in co-cultures with tumor cells or in an autologous antigen-specific T cell model by flow cytometry and multiplex proteomic analysis. Statistical differences were analyzed with Kruskal-Wallis test followed by Dunn's multiple comparison test. RESULTS All three transgenes were expressed in infected melanoma cells and DCs and transgene expression did not impair the oncolytic activity in tumor cells. DCs were matured post LOAd732 infection and expressed a multitude of co-stimulatory molecules and pro-inflammatory cytokines crucial for T-cell responses. Furthermore, these DCs were capable of expanding and stimulating antigen-specific T cells in addition to natural killer (NK) cells. Strikingly, the addition of immunosuppressive cytokines TGF-β1 and IL-10 did not affect the ability of LOAd732-matured DCs to expand antigen-specific T cells and these cells retained an enhanced activation profile. CONCLUSIONS LOAd732 is a novel immunostimulatory gene therapy based on an oncolytic adenovirus that expresses three transgenes, which are essential for mediating an anti-tumor immune response by activating DCs and stimulating T and NK cells even under imunosuppressive conditions commonly present in the TME. These qualities make LOAd732 an appealing new immunotherapy approach.
Collapse
Affiliation(s)
- Jessica Wenthe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden.
- Lokon Pharma AB, Uppsala, Sweden.
| | - Emma Eriksson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
- Lokon Pharma AB, Uppsala, Sweden
| | - Ann-Charlotte Hellström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| | - Rafael Moreno
- IDIBELL-Institute Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gustav Ullenhag
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Ramon Alemany
- IDIBELL-Institute Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Tanja Lövgren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
- Lokon Pharma AB, Uppsala, Sweden
| |
Collapse
|
3
|
Sunil V, Mozhi A, Zhan W, Teoh JH, Wang CH. Convection enhanced delivery of light responsive antigen capturing oxygen generators for chemo-phototherapy triggered adaptive immunity. Biomaterials 2021; 275:120974. [PMID: 34166911 DOI: 10.1016/j.biomaterials.2021.120974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
In recent years, combination therapy has emerged as the cornerstone of clinical practice in treating glioblastoma multiforme. However, their ability to trigger and leverage the body's adaptive immunity has rarely been studied. Tumour heterogeneity, the presence of the blood-brain barrier, and an immunosuppressive tumor microenvironment play a crucial role in the 90% local tumor recurrence post-treatment. Herein, we report an improved combination therapy approach capable of stimulating an immune response that utilizes Light responsive antigen-capturing oxygen generators (LAGs). The engineered LAGs loaded with a non-genotoxic molecule, Nutlin-3a, and a photosensitizer, Protoporphyrin IX, can release the payload on-demand when exposed to light of a specific wavelength. The in-situ oxygen generation capability of LAGs enables tumor oxygenation enhancement, thereby alleviating the tumor hypoxia and enhancing the efficacy of chemo-photodynamic therapy. Furthermore, by modulating the surface properties of LAGs, we demonstrated that the tumor-derived protein antigens released can be captured and retained in-situ, which improves antigen uptake and presentation by the antigen-presenting cells. Dual drug-loaded LAGs (DD-LAGs) upregulated the expression of cell surface CD83 maturation and CD86 costimulatory markers on monocyte-derived-dendritic cells, suggesting intrinsic immune adjuvancy. In the presence of 3D printed hypoxic U87 spheroids (h-U87), DD-LAGs induced cancer cell death, upregulated IL-1β, and downregulated IL-10 resulting in CD3+, helper CD4+, and cytotoxic CD8+ proliferation. Finally, we have investigated convection-enhanced delivery as a potential route of administration for DD-LAGs. Our work presents a novel strategy to induce tumor cell death both during and post-treatment, thereby reducing the possibility of recurrence.
Collapse
Affiliation(s)
- Vishnu Sunil
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Anbu Mozhi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wenbo Zhan
- School of Engineering, King's College, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Jia Heng Teoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
4
|
Herrera-Uribe J, Zaldívar-López S, Aguilar C, Luque C, Bautista R, Carvajal A, Claros MG, Garrido JJ. Regulatory role of microRNA in mesenteric lymph nodes after Salmonella Typhimurium infection. Vet Res 2018; 49:9. [PMID: 29391047 PMCID: PMC5796392 DOI: 10.1186/s13567-018-0506-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022] Open
Abstract
Salmonellosis is a gastrointestinal disease caused by non-typhoidal Salmonella serovars such as Salmonella Typhimurium. This pathology is a zoonosis, and food animals with subclinical infection constitute a vast reservoir for disease. After intestinal colonization, Salmonella Typhimurium reaches mesenteric lymph nodes (MLN), where infection is controlled avoiding systemic spread. Although the molecular basis of this infection has been extensively studied, little is known about how microRNA (miRNA) regulate the expression of proteins involved in the Salmonella-host interaction. Using small RNA-seq, we examined expression profiles of MLN 2 days after infection with Salmonella Typhimurium, and we found 110 dysregulated miRNA. Among them, we found upregulated miR-21, miR-155, miR-150, and miR-221, as well as downregulated miR-143 and miR-125, all of them previously linked to other bacterial infections. Integration with proteomic data revealed 30 miRNA potentially regulating the expression of 15 proteins involved in biological functions such as cell death and survival, inflammatory response and antigenic presentation. The inflammatory response was found increased via upregulation of miRNA such as miR-21 and miR-155. Downregulation of miR-125a/b, miR-148 and miR-1 were identified as potential regulators of MHC-class I components PSMB8, HSP90B1 and PDIA3, respectively. Furthermore, we confirmed that miR-125a is a direct target of immunoproteasome component PSMB8. Since we also found miR-130 downregulation, which is associated with upregulation of HSPA8, we suggest induction of both MHC-I and MHC-II antigen presentation pathways. In conclusion, our study identifies miRNA that could regulate critical networks for antigenic presentation, inflammatory response and cytoskeletal rearrangements.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Sara Zaldívar-López
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain.
| | - Carmen Aguilar
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain.,Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Cristina Luque
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, 29590, Málaga, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, 29590, Málaga, Spain.,Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain
| |
Collapse
|
5
|
Schneider K, Bol V, Grégoire V. Lack of differences in radiation-induced immunogenicity parameters between HPV-positive and HPV-negative human HNSCC cell lines. Radiother Oncol 2017; 124:411-417. [PMID: 28916224 DOI: 10.1016/j.radonc.2017.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE Clinical studies indicate that patients with HPV/p16-associated head & neck squamous cell carcinoma (HNSCC) represent a subgroup with a better prognosis and improved response to conventional radiotherapy. Involvement of immune-based factors has been hypothesized. In the present study, we investigated radiation-induced differences in release of damage associated molecular patterns (DAMPs), cytokines and activation of dendritic cells (DCs) in HPV-positive and negative HNSCC cancer cell lines. MATERIAL AND METHODS Calreticulin (CRT) exposure was detected on cancer cell surface. ATP, HMGB1 and cytokines were measured in culture supernatants. Maturation marker CD83 surface exposure was determined on DCs after co-incubation with irradiated tumor cells. RESULTS There was no increase in DAMPs and cytokine profiles after radiation treatment and no difference between HPV+ and HPV- cell lines. The HPV/p16-positive SCC90 cells showed a trend for increased total CRT, HMGB1, and number of cytokines compared to all other cell lines. None of the irradiated cancer cell lines could affect DC maturation. CONCLUSIONS Radiation treatment did not increase immunogenicity of HNSCC cell lines assessed by membrane CRT, ATP, HMGB1, cytokines production, and by activation of immature DCs. There was no difference between HPV-positive and HPV-negative cell lines.
Collapse
Affiliation(s)
- Karolin Schneider
- Center for Molecular Imaging, Radiotherapy and Oncology, Institute for Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Vanesa Bol
- Center for Molecular Imaging, Radiotherapy and Oncology, Institute for Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Vincent Grégoire
- Center for Molecular Imaging, Radiotherapy and Oncology, Institute for Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium; Radiation Oncology Department, St-Luc University Hospital, Brussels, Belgium.
| |
Collapse
|
6
|
Bai Y, Zheng JE, Wang N, Cai HH, Zhai LN, Wu YH, Wang F, Jin RM, Zhou DF. Effects of dendritic cell-activated and cytokine-induced killer cell therapy on 22 children with acute myeloid leukemia after chemotherapy. ACTA ACUST UNITED AC 2015; 35:689-693. [PMID: 26489623 DOI: 10.1007/s11596-015-1491-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/12/2015] [Indexed: 10/22/2022]
Abstract
The efficiency of dendritic cell-activated and cytokine-induced killer cell (DC-CIK) therapy on children with acute myeloid leukemia (AML) after chemotherapy was investigated. Mononuclear cells were collected from children achieving complete remission after chemotherapy, cultured in vitro and transfused back into the same patient. Interleukin-2 (IL-2) was injected subcutaneously every other day 10 times at the dose of 1 × 10(6) units. Peripheral blood lymphocyte subsets and minimal residual disease (MRD) were detected by flow cytometry. Function of bone marrow was monitored by methods of morphology, immunology, cytogenetics and molecular biology. The side effects were also observed during the treatment. The average follow-up period for all the 22 patients was 71 months and relapse occurred in two AML patients (9.1%). The percentage of CD3(+)/CD8(+) cells in peripheral blood of 15 patients at the 3rd month after DC-CIK treatment (36.73% ± 12.51%) was dramatically higher than that before treatment (29.20% ± 8.34%, P < 0.05). The MRD rate was >0.1% in 5 patients before the treatment, and became lower than 0.1% 3 months after the treatment. During the transfusion of DC-CIK, side effects including fever, chills and hives appeared in 7 out of 22 (31.82%) cases but disappeared quickly after symptomatic treatments. There were no changes in electrocardiography and liver-renal functions after the treatment. MRD in children with AML can be eliminated by DC-CIK therapy which is safe and has fewer side effects.
Collapse
Affiliation(s)
- Yan Bai
- Pediatric Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jin-E Zheng
- Stem Cell Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nan Wang
- Pediatric Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - He-Hua Cai
- Pediatric Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Na Zhai
- Pediatric Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yao-Hui Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wang
- Pediatric Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Run-Ming Jin
- Pediatric Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dong-Feng Zhou
- Pediatric Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Kim G, Jang MS, Son YM, Seo MJ, Ji SY, Han SH, Jung ID, Park YM, Jung HJ, Yun CH. Curcumin inhibits CD4(+) T cell activation, but augments CD69 expression and TGF-β1-mediated generation of regulatory T cells at late phase. PLoS One 2013; 8:e62300. [PMID: 23658623 PMCID: PMC3637266 DOI: 10.1371/journal.pone.0062300] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 03/21/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Curcumin is a promising candidate for a natural medicinal agent to treat chronic inflammatory diseases. Although CD4(+) T cells have been implicated in the pathogenesis of chronic inflammation, whether curcumin directly regulates CD4(+) T cells has not been definitively established. Here, we showed curcumin-mediated regulation of CD2/CD3/CD28-initiated CD4(+) T cell activation in vitro. METHODOLOGY/PRINCIPAL FINDINGS Primary human CD4(+) T cells were stimulated with anti-CD2/CD3/CD28 antibody-coated beads as an in vitro surrogate system for antigen presenting cell-T cell interaction and treated with curcumin. We found that curcumin suppresses CD2/CD3/CD28-initiated CD4(+) T cell activation by inhibiting cell proliferation, differentiation and cytokine production. On the other hand, curcumin attenuated the spontaneous decline of CD69 expression and indirectly increased expression of CCR7, L-selectin and Transforming growth factor-β1 (TGF-β1) at the late phase of CD2/CD3/CD28-initiated T cell activation. Curcumin-mediated up-regulation of CD69 at late phase was associated with ERK1/2 signaling. Furthermore, TGF-β1 was involved in curcumin-mediated regulation of T cell activation and late-phase generation of regulatory T cells. CONCLUSIONS/SIGNIFICANCE Curcumin not merely blocks, but regulates CD2/CD3/CD28-initiated CD4(+) T cell activation by augmenting CD69, CCR7, L-selectin and TGF-β1 expression followed by regulatory T cell generation. These results suggest that curcumin could directly reduce T cell-dependent inflammatory stress by modulating CD4(+) T cell activation at multiple levels.
Collapse
MESH Headings
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antibodies/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Curcumin/pharmacology
- Gene Expression Regulation/drug effects
- Humans
- L-Selectin/genetics
- L-Selectin/immunology
- Lectins, C-Type/agonists
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lymphocyte Activation/drug effects
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/immunology
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/immunology
- Primary Cell Culture
- Receptors, CCR7/genetics
- Receptors, CCR7/immunology
- Signal Transduction
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Transforming Growth Factor beta1/pharmacology
Collapse
Affiliation(s)
- Girak Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Mi Seon Jang
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Min Son
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min Ji Seo
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Yun Ji
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- National Institute of Animal Science, Suwon, Gyeonggi-do, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology & Immunology, BK21 Program, and Dental Research Institute School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - In Duk Jung
- Konkuk University College of Medicine, Seoul, Republic of Korea
| | - Yeong-Min Park
- Konkuk University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Jung
- National Institute of Animal Science, Suwon, Gyeonggi-do, Republic of Korea
| | - Cheol-Heui Yun
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- World Class University Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
8
|
CHEN HAO, JIN YANG, CHEN TING, ZHANG MINGQIANG, MA WANLI, XIONG XIANZHI, TAO XIAONAN. The antitumor effect of human cord blood-derived dendritic cells modified by the livin α gene in lung cancer cell lines. Oncol Rep 2012; 29:619-27. [DOI: 10.3892/or.2012.2133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/16/2012] [Indexed: 11/05/2022] Open
|