1
|
Ford M, Thomson PJ, Snoeys J, Meng X, Naisbitt DJ. Selective HLA Class II Allele-Restricted Activation of Atabecestat Metabolite-Specific Human T-Cells. Chem Res Toxicol 2024; 37:1712-1727. [PMID: 39348529 PMCID: PMC11497358 DOI: 10.1021/acs.chemrestox.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Elevations in hepatic enzymes were detected in several trial patients exposed to the Alzheimer's drug atabecestat, which resulted in termination of the drug development program. Characterization of hepatic T-lymphocyte infiltrates and diaminothiazine (DIAT) metabolite-responsive, human leukocyte antigen (HLA)-DR-restricted, CD4+ T-lymphocytes in the blood of patients confirmed an immune pathogenesis. Patients with immune-mediated liver injury expressed a restricted panel of HLA-DRB1 alleles including HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01. Thus, the objectives of this study were to (i) generate DIAT-responsive T-cell clones from HLA-genotyped drug-naive donors, (ii) characterize pathways of DIAT-specific T-cell activation, and (iii) assess HLA allele restriction of the DIAT-specific T-cell response. Sixteen drug-naive donors expressing the HLA-DR molecules outlined above were recruited, and T-cell clones were generated. Cellular phenotype, function, and HLA-allele restriction were assessed using culture assays. Peptides displayed by HLA class II molecules in the presence and absence of atabecestat were analyzed by mass spectrometry. Several DIAT-responsive CD4+ clones, displaying no reactivity toward the parent drug, were successfully generated from donors expressing HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01 but not from other donors expressing other HLA-DRB1 alleles. T-cell clones were activated following direct binding of DIAT to HLA-DR proteins expressed on the surface of antigen presenting cells. DIAT binding did not alter the HLA-DRB1 peptide binding repertoire, indicative of a binding interaction with the HLA-associated peptide rather than with the HLA protein itself. DIAT-specific T-cell responses displayed HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01 restriction. These data demonstrate that DIAT displays a degree of selectivity toward HLA protein and associated peptides, with expression of certain alleles increasing and that of others decreasing, the likelihood that a drug-specific T-cell response develops.
Collapse
Affiliation(s)
- Megan Ford
- Centre
for Drug Safety Science, Department of Pharmacology and Therapeutics,
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Paul J. Thomson
- Centre
for Drug Safety Science, Department of Pharmacology and Therapeutics,
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, U.K.
- AstraZeneca,
The Discovery Centre, Cambridge Biomedical
Campus, Cambridge CB2 0AA, U.K.
| | - Jan Snoeys
- Translational
PK PD and Investigative Toxicology, Janssen
Research & Development, Division of Janssen Pharmaceutica NV, Beerse 2340, Belgium
| | - Xiaoli Meng
- Centre
for Drug Safety Science, Department of Pharmacology and Therapeutics,
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Dean J. Naisbitt
- Centre
for Drug Safety Science, Department of Pharmacology and Therapeutics,
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, U.K.
| |
Collapse
|
2
|
Decker CH, Rapier-Sharman N, Pickett BE. Mutation in Hemagglutinin Antigenic Sites in Influenza A pH1N1 Viruses from 2015-2019 in the United States Mountain West, Europe, and the Northern Hemisphere. Genes (Basel) 2022; 13:909. [PMID: 35627294 PMCID: PMC9141826 DOI: 10.3390/genes13050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
H1N1 influenza A virus is a respiratory pathogen that undergoes antigenic shift and antigenic drift to improve viral fitness. Tracking the evolutionary trends of H1N1 aids with the current detection and the future response to new viral strains as they emerge. Here, we characterize antigenic drift events observed in the hemagglutinin (HA) sequence of the pandemic H1N1 lineage from 2015-2019. We observed the substitutions S200P, K147N, and P154S, together with other mutations in structural, functional, and/or epitope regions in 2015-2019 HA protein sequences from the Mountain West region of the United States, the larger United States, Europe, and other Northern Hemisphere countries. We reconstructed multiple phylogenetic trees to track the relationships and spread of these mutations and tested for evidence of selection pressure on HA. We found that the prevalence of amino acid substitutions at positions 147, 154, 159, 200, and 233 significantly changed throughout the studied geographical regions between 2015 and 2019. We also found evidence of coevolution among a subset of these amino acid substitutions. The results from this study could be relevant for future epidemiological tracking and vaccine prediction efforts. Similar analyses in the future could identify additional sequence changes that could affect the pathogenicity and/or infectivity of this virus in its human host.
Collapse
Affiliation(s)
| | | | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (C.H.D.); (N.R.-S.)
| |
Collapse
|
3
|
A Systematic Review of T Cell Epitopes Defined from the Proteome of Hepatitis B Virus. Vaccines (Basel) 2022; 10:vaccines10020257. [PMID: 35214714 PMCID: PMC8878595 DOI: 10.3390/vaccines10020257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a worldwide health problem and no eradicative therapy is currently available. Host T cell immune responses have crucial influences on the outcome of HBV infection, however the development of therapeutic vaccines, T cell therapies and the clinical evaluation of HBV-specific T cell responses are hampered markedly by the lack of validated T cell epitopes. This review presented a map of T cell epitopes functionally validated from HBV antigens during the past 33 years; the human leukocyte antigen (HLA) supertypes to present these epitopes, and the methods to screen and identify T cell epitopes. To the best of our knowledge, a total of 205 CD8+ T cell epitopes and 79 CD4+ T cell epitopes have been defined from HBV antigens by cellular functional experiments thus far, but most are restricted to several common HLA supertypes, such as HLA-A0201, A2402, B0702, DR04, and DR12 molecules. Therefore, the currently defined T cell epitope repertoire cannot cover the major populations with HLA diversity in an indicated geographic region. More researches are needed to dissect a more comprehensive map of T cell epitopes, which covers overall HBV proteome and global patients.
Collapse
|
4
|
Ramarathinam SH, Ho BK, Dudek NL, Purcell AW. HLA class II immunopeptidomics reveals that co-inherited HLA-allotypes within an extended haplotype can improve proteome coverage for immunosurveillance. Proteomics 2021; 21:e2000160. [PMID: 34357683 DOI: 10.1002/pmic.202000160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023]
Abstract
Human leucocyte antigen (HLA) class II molecules in humans are encoded by three different loci, HLA-DR, -DQ, and -DP. These molecules share approximately 70% sequence similarity and all present peptide ligands to circulating T cells. While the peptide repertoires of numerous HLA-DR, -DQ, and -DP allotypes have been examined, there have been few reports on the combined repertoire of these co-inherited molecules expressed in a single cell as an extended HLA haplotype. Here we describe the endogenous peptide repertoire of a human B lymphoblastoid cell line (C1R) expressing the class II haplotype HLA-DR12/DQ7/DP4. We have identified 71350 unique naturally processed peptides presented collectively by HLA-DR12, HLA-DQ7, or HLA-DP4. The resulting "haplodome" is complemented by the cellular proteome defined by standard LC-MS/MS approaches. This large dataset has shed light on properties of these class II ligands especially the preference for membrane and extracellular source proteins. Our data also provides insights into the co-evolution of these conserved haplotypes of closely linked and co-inherited HLA molecules; which together increase sequence coverage of cellular proteins for immune surveillance with minimal overlap between each co-inherited HLA-class II allomorph.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Bosco K Ho
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nadine L Dudek
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Chen L, Anthony A, Oveissi S, Huang M, Zanker D, Xiao K, Wu C, Zou Q, Chen W. Broad-Based CD4 + T Cell Responses to Influenza A Virus in a Healthy Individual Who Lacks Typical Immunodominance Hierarchy. Front Immunol 2017; 8:375. [PMID: 28421076 PMCID: PMC5377932 DOI: 10.3389/fimmu.2017.00375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/15/2017] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) infection is a significant cause of morbidity and mortality worldwide. CD4+ T cell responses have been shown to be important for influenza protection in mouse models and in human volunteers. IAV antigen-specific CD4+ T cell responses were found to focus on matrix 1 (M1) and nucleoprotein (NP) at the protein antigen level. At the epitope level, only several epitopes within M1 and NP were recognized by CD4+ T cells. And the epitope-specific CD4+ T cell responses showed a typical immunodominance hierarchy in most of the healthy individuals studied. In this study, we reported one case of atypical immunodominance hierarchy of CD4+ T cell responses to IAV. M1 and NP were still the immunodominant targets of CD4+ T cell responses. However, CD4+ T cell responses specific to 11 epitopes derived from M1 and NP were detected and showed no significant immunodominance hierarchy. Such an atypical pattern is likely determined by the individual's HLA alleles. These findings will help us better understand the anti-IAV immunity as a whole and improve future vaccines against IAV.
Collapse
Affiliation(s)
- Li Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China.,T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia.,Department of Blood Transfusion, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Anjaleena Anthony
- T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Sara Oveissi
- T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Miaojuan Huang
- T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Damien Zanker
- T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Kun Xiao
- T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
6
|
Identification of a Highly Conserved Epitope on Avian Influenza Virus Non-Structural Protein 1 Using a Peptide Microarray. PLoS One 2016; 11:e0149868. [PMID: 26938453 PMCID: PMC4777286 DOI: 10.1371/journal.pone.0149868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/05/2016] [Indexed: 11/20/2022] Open
Abstract
Avian influenza virus (AIV) non-structural protein 1 (NS1) is a multifunctional protein. It is present at high levels in infected cells and can be used for AIV detection and diagnosis. In this study, we generated monoclonal antibody (MAb) D7 against AIV NS1 protein by immunization of BALB/c mice with purified recombinant NS1 protein expressed in Escherichia coli. Isotype determination revealed that the MAb was IgG1/κ-type subclass. To identify the epitope of the MAb D7, the NS1 protein was truncated into a total of 225 15-mer peptides with 14 amino acid overlaps, which were spotted for a peptide microarray. The results revealed that the MAb D7 recognized the consensus DAPF motif. Furthermore, the AIV NS1 protein with the DAPF motif deletion was transiently expressed in 293T cells and failed to react with MAb D7. Subsequently, the DAPF motif was synthesized with an elongated GSGS linker at both the C- and N-termini. The MAb D7 reacted with the synthesized peptide both in enzyme-linked immunosorbent assay (ELISA) and dot-blot assays. From these results, we concluded that DAPF motif is the epitope of MAb D7. To our knowledge, this is the first report of a 4-mer epitope on the NS1 protein of AIV that can be recognized by MAb using a peptide microarray, which is able to simplify epitope identification, and that could serve as the basis for immune responses against avian influenza.
Collapse
|
7
|
Immunodominant CD4+ T-cell responses to influenza A virus in healthy individuals focus on matrix 1 and nucleoprotein. J Virol 2014; 88:11760-73. [PMID: 25078703 DOI: 10.1128/jvi.01631-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigen-specific CD4(+) T cells are essential for effective virus-specific host responses, with recent human challenge studies (in volunteers) establishing their importance for influenza A virus (IAV)-specific immunity. However, while many IAV CD4(+) T cell epitopes have been identified, few are known to stimulate immunodominant CD4(+) T cell responses. Moreover, much remains unclear concerning the major antigen(s) responded to by the human CD4(+) T cells and the extents and magnitudes of these responses. We initiated a systematic screen of immunodominant CD4(+) T cell responses to IAV in healthy individuals. Using in vitro expanded-multispecificity IAV-specific T cell lines and individual IAV protein antigens produced by recombinant vaccinia viruses, we found that the internal matrix protein 1 (M1) and nucleoprotein (NP) were the immunodominant targets of CD4(+) T cell responses. Ten epitopes derived from M1 and NP were definitively characterized. Furthermore, epitope sequence conservation analysis established that immunodominance correlated with an increased frequency of mutations, reflecting the fact that these prominent epitopes are under greater selective pressure. Such evidence that particular CD4(+) T cells are important for protection/recovery is of value for the development of novel IAV vaccines and for our understanding of different profiles of susceptibility to these major pathogens. Importance: Influenza virus causes half a million deaths annually. CD4(+) T cell responses have been shown to be important for protection against influenza and for recovery. CD4(+) T cell responses are also critical for efficient CD8(+) T cell response and antibody response. As immunodominant T cells generally play a more important role, characterizing these immunodominant responses is critical for influenza vaccine development. We show here that the internal matrix protein 1 (M1) and nucleoprotein (NP), rather than the surface proteins reported previously, are the immunodominant targets of CD4(+) T cell responses. Interestingly, these immunodominant epitope regions accumulated many mutations over time, which likely indicates increased immune pressure. These findings have significant implications for the design of T cell-based influenza vaccines.
Collapse
|