1
|
Lu X, Liu Y, Xu L, Liang H, Zhou X, Lei H, Sha L. Role of Jumonji domain-containing protein D3 and its inhibitor GSK-J4 in Hashimoto's thyroiditis. Open Med (Wars) 2023; 18:20230659. [PMID: 36874364 PMCID: PMC9979002 DOI: 10.1515/med-2023-0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 03/05/2023] Open
Abstract
Hashimoto's thyroiditis (HT) is an autoimmune illness caused by a combination of genetic, epigenetic, and environmental factors. The pathogenesis of HT is not fully elucidated, especially in epigenetics. The epigenetic regulator Jumonji domain-containing protein D3 (JMJD3) has been extensively investigated in immunological disorders. This study has been performed to explore the roles and potential mechanisms of JMJD3 in HT. Thyroid samples from patients and healthy subjects were collected. We first analyzed the expression of JMJD3 and chemokines in the thyroid gland using real-time PCR and immunohistochemistry. In vitro, the apoptosis effect of the JMJD3-specific inhibitor GSK-J4 on the thyroid epithelial cell line Nthy-ori 3-1 was evaluated using FITC Annexin V Detection kit. Reverse transcription-polymerase chain reaction and Western blotting were applied to examine the inhibitory effect of GSK-J4 on the inflammation of thyrocytes. In the thyroid tissue of HT patients, JMJD3 messenger RNA and protein levels were substantially greater than in controls (P < 0.05). Chemokines C-X-C motif chemokine ligand 10 (CXCL10) and C-C motif chemokine ligand 2 (CCL2) were elevated in HT patients, and thyroid cells with stimulation of tumor necrosis factor α (TNF-α). GSK-J4 could suppress TNF-α-induced synthesis of chemokines CXCL10 and CCL2 and prohibit thyrocyte apoptosis. Our results shed light on the potential role of JMJD3 in HT and indicate that JMJD3 may become a novel therapeutic target in HT treatment and prevention.
Collapse
Affiliation(s)
- Xixuan Lu
- Department of Endocrinology, Cardiovascular and Cerebrovascular Disease Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan 750004, Ningxia, China
| | - Ying Liu
- Department of Radiology, The 942th Hospital of the People’s Liberation Army Joint Logistics Support Force, Yinchuan, Ningxia, China
| | - Li Xu
- Department of Radiology, The 942th Hospital of the People’s Liberation Army Joint Logistics Support Force, Yinchuan, Ningxia, China
| | - Haiyan Liang
- Department of Endocrinology, Cardiovascular and Cerebrovascular Disease Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Xiaoli Zhou
- Department of Endocrinology, Cardiovascular and Cerebrovascular Disease Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Hong Lei
- Department of Endocrinology, Cardiovascular and Cerebrovascular Disease Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Liping Sha
- Department of Endocrinology, Cardiovascular and Cerebrovascular Disease Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| |
Collapse
|
2
|
Malinczak CA, Rasky AJ, Fonseca W, Schaller MA, Allen RM, Ptaschinski C, Morris S, Lukacs NW. Upregulation of H3K27 Demethylase KDM6 During Respiratory Syncytial Virus Infection Enhances Proinflammatory Responses and Immunopathology. THE JOURNAL OF IMMUNOLOGY 2019; 204:159-168. [PMID: 31748348 DOI: 10.4049/jimmunol.1900741] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
Severe disease following respiratory syncytial virus (RSV) infection has been linked to enhanced proinflammatory cytokine production that promotes a Th2-type immune environment. Epigenetic regulation in immune cells following viral infection plays a role in the inflammatory response and may result from upregulation of key epigenetic modifiers. In this study, we show that RSV-infected bone marrow-derived dendritic cells (BMDC) as well as pulmonary dendritic cells (DC) from RSV-infected mice upregulated the expression of Kdm6b/Jmjd3 and Kdm6a/Utx, H3K27 demethylases. KDM6-specific chemical inhibition (GSK J4) in BMDC led to decreased production of chemokines and cytokines associated with the inflammatory response during RSV infection (i.e., CCL-2, CCL-3, CCL-5, IL-6) as well as decreased MHC class II and costimulatory marker (CD80/86) expression. RSV-infected BMDC treated with GSK J4 altered coactivation of T cell cytokine production to RSV as well as a primary OVA response. Airway sensitization of naive mice with RSV-infected BMDCs exacerbate a live challenge with RSV infection but was inhibited when BMDCs were treated with GSK J4 prior to sensitization. Finally, in vivo treatment with the KDM6 inhibitor, GSK J4, during RSV infection reduced inflammatory DC in the lungs along with IL-13 levels and overall inflammation. These results suggest that KDM6 expression in DC enhances proinflammatory innate cytokine production to promote an altered Th2 immune response following RSV infection that leads to more severe immunopathology.
Collapse
Affiliation(s)
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Matthew A Schaller
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL 32610; and
| | - Ronald M Allen
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; .,Mary H. Weiser Food and Allergy Center, Ann Arbor, MI 48109
| |
Collapse
|
3
|
Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell 2019; 10:864-882. [PMID: 31701394 PMCID: PMC6881266 DOI: 10.1007/s13238-019-0653-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, many studies have shown that histone methylation plays an important role in maintaining the active and silent state of gene expression in human diseases. The Jumonji domain-containing protein D3 (JMJD3), specifically demethylate di- and trimethyl-lysine 27 on histone H3 (H3K27me2/3), has been widely studied in immune diseases, infectious diseases, cancer, developmental diseases, and aging related diseases. We will focus on the recent advances of JMJD3 function in human diseases, and looks ahead to the future of JMJD3 gene research in this review.
Collapse
Affiliation(s)
- Xiangxian Zhang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Yuan
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Daskalaki MG, Tsatsanis C, Kampranis SC. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses. J Cell Physiol 2018; 233:6495-6507. [PMID: 29574768 DOI: 10.1002/jcp.26497] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/22/2018] [Indexed: 12/25/2022]
Abstract
Macrophages respond to noxious stimuli and contribute to inflammatory responses by eliminating pathogens or damaged tissue and maintaining homeostasis. Response to activation signals and maintenance of homeostasis require tight regulation of genes involved in macrophage activation and inactivation processes, as well as genes involved in determining their polarization state. Recent evidence has revealed that such regulation occurs through histone modifications that render inflammatory or polarizing gene promoters accessible to transcriptional complexes. Thus, inflammatory and anti-inflammatory genes are regulated by histone acetylation and methylation, determining their activation state. Herein, we review the current knowledge on the role of histone modifying enzymes (acetyltransferases, deacetylases, methyltransferases, and demethylases) in determining the responsiveness and M1 or M2 polarization of macrophages. The contribution of these enzymes in the development of inflammatory diseases is also presented.
Collapse
Affiliation(s)
- Maria G Daskalaki
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Crete, Greece.,Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Sotirios C Kampranis
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
5
|
Ciuffa R, Caron E, Leitner A, Uliana F, Gstaiger M, Aebersold R. Contribution of Mass Spectrometry-Based Proteomics to the Understanding of TNF-α Signaling. J Proteome Res 2016; 16:14-33. [PMID: 27762135 DOI: 10.1021/acs.jproteome.6b00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NF-κB is a family of ubiquitous dimeric transcription factors that play a role in a myriad of cellular processes, ranging from differentiation to stress response and immunity. In inflammation, activation of NF-κB is mediated by pro-inflammatory cytokines, in particular the prototypic cytokines IL-1β and TNF-α, which trigger the activation of complex signaling cascades. In spite of decades of research, the system level understanding of TNF-α signaling is still incomplete. This is partially due to the limited knowledge at the proteome level. The objective of this review is to summarize and critically evaluate the current status of the proteomic research on TNF-α signaling. We will discuss the merits and flaws of the existing studies as well as the insights that they have generated into the proteomic landscape and architecture connected to this signaling pathway. Besides delineating past and current trends in TNF-α proteomic research, we will identify research directions and new methodologies that can further contribute to characterize the TNF-α associated proteome in space and time.
Collapse
Affiliation(s)
- Rodolfo Ciuffa
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Etienne Caron
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Federico Uliana
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland.,Faculty of Science, University of Zurich , 8006 Zurich, Switzerland
| |
Collapse
|
6
|
Hwang SM, Uhm TG, Lee SK, Kong SK, Jung KH, Binas B, Chai YG, Park SW, Chung IY. Olig2 is expressed late in human eosinophil development and controls Siglec-8 expression. J Leukoc Biol 2016; 100:711-723. [DOI: 10.1189/jlb.1a0715-314rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 03/12/2016] [Indexed: 01/01/2023] Open
|
7
|
Kapellos TS, Iqbal AJ. Epigenetic Control of Macrophage Polarisation and Soluble Mediator Gene Expression during Inflammation. Mediators Inflamm 2016; 2016:6591703. [PMID: 27143818 PMCID: PMC4842078 DOI: 10.1155/2016/6591703] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
Macrophages function as sentinel cells, which constantly monitor the host environment for infection or injury. Macrophages have been shown to exhibit a spectrum of activated phenotypes, which can often be categorised under the M1/M2 paradigm. M1 macrophages secrete proinflammatory cytokines and chemokines, such as TNF-α, IL-6, IL-12, CCL4, and CXCL10, and induce phagocytosis and oxidative dependent killing mechanisms. In contrast, M2 macrophages support wound healing and resolution of inflammation. In the past decade, interest has grown in understanding the mechanisms involved in regulating macrophage activation. In particular, epigenetic control of M1 or M2 activation states has been shown to rely on posttranslational modifications of histone proteins adjacent to inflammatory-related genes. Changes in methylation and acetylation of histones by methyltransferases, demethylases, acetyltransferases, and deacetylases can all impact how macrophage phenotypes are generated. In this review, we summarise the latest advances in the field of epigenetic regulation of macrophage polarisation to M1 or M2 states, with particular focus on the cytokine and chemokine profiles associated with these phenotypes.
Collapse
Affiliation(s)
| | - Asif J. Iqbal
- Sir William Dunn school of Pathology, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
8
|
Burchfield JS, Li Q, Wang HY, Wang RF. JMJD3 as an epigenetic regulator in development and disease. Int J Biochem Cell Biol 2015; 67:148-57. [PMID: 26193001 DOI: 10.1016/j.biocel.2015.07.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023]
Abstract
Gene expression is epigenetically regulated through DNA methylation and covalent chromatin modifications, such as acetylation, phosphorylation, ubiquitination, sumoylation, and methylation of histones. Histone methylation state is dynamically regulated by different groups of histone methyltransferases and demethylases. The trimethylation of histone 3 (H3K4) at lysine 4 is usually associated with the activation of gene expression, whereas trimethylation of histone 3 at lysine 27 (H3K27) is associated with the repression of gene expression. The polycomb repressive complex contains the H3K27 methyltransferase Ezh2 and controls dimethylation and trimethylation of H3K27 (H3K27me2/3). The Jumonji domain containing-3 (Jmjd3, KDM6B) and ubiquitously transcribed X-chromosome tetratricopeptide repeat protein (UTX, KDM6A) have been identified as H3K27 demethylases that catalyze the demethylation of H3K27me2/3. The role and mechanisms of both JMJD3 and UTX have been extensively studied for their involvement in development, cell plasticity, immune system, neurodegenerative disease, and cancer. In this review, we will focus on recent progresses made on understanding JMJD3 in the regulation of gene expression in development and diseases. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Jana S Burchfield
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Qingtian Li
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Helen Y Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
9
|
Dual RNA sequencing reveals the expression of unique transcriptomic signatures in lipopolysaccharide-induced BV-2 microglial cells. PLoS One 2015; 10:e0121117. [PMID: 25811458 PMCID: PMC4374676 DOI: 10.1371/journal.pone.0121117] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/28/2015] [Indexed: 11/26/2022] Open
Abstract
Microglial cells become rapidly activated through interactions with pathogens, and the persistent activation of these cells is associated with various neurodegenerative diseases. Previous studies have investigated the transcriptomic signatures in microglia or macrophages using microarray technologies. However, this method has numerous restrictions, such as spatial biases, uneven probe properties, low sensitivity, and dependency on the probes spotted. To overcome this limitation and identify novel transcribed genes in response to LPS, we used RNA Sequencing (RNA-Seq) to determine the novel transcriptomic signatures in BV-2 microglial cells. Sequencing assessment and quality evaluation showed that approximately 263 and 319 genes (≥ 1.5 log2-fold), such as cytokines and chemokines, were strongly induced after 2 and 4 h, respectively, and the induction of several genes with unknown immunological functions was also observed. Importantly, we observed that previously unidentified transcription factors (TFs) (irf1, irf7, and irf9), histone demethylases (kdm4a) and DNA methyltransferases (dnmt3l) were significantly and selectively expressed in BV-2 microglial cells. The gene expression levels, transcription start sites (TSS), isoforms, and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with LPS. In addition, gene ontology, molecular networks and pathway analyses identified the top significantly regulated functional classification, canonical pathways and network functions at each activation status. Moreover, we further analyzed differentially expressed genes to identify transcription factor (TF) motifs (−950 to +50 bp of the 5’ upstream promoters) and epigenetic mechanisms. Furthermore, we confirmed that the expressions of key inflammatory genes as well as pro-inflammatory mediators in the supernatants were significantly induced in LPS treated primary microglial cells. This transcriptomic analysis is the first to show a comparison of the family-wide differential expression of most known immune genes and also reveal transcription evidence of multiple gene families in BV-2 microglial cells. Collectively, these findings reveal unique transcriptomic signatures in BV-2 microglial cells required for homeostasis and effective immune responses.
Collapse
|
10
|
Jung KH, Das A, Chai JC, Kim SH, Morya N, Park KS, Lee YS, Chai YG. RNA sequencing reveals distinct mechanisms underlying BET inhibitor JQ1-mediated modulation of the LPS-induced activation of BV-2 microglial cells. J Neuroinflammation 2015; 12:36. [PMID: 25890327 PMCID: PMC4359438 DOI: 10.1186/s12974-015-0260-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/02/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Microglial cells become rapidly activated through interaction with pathogens, and their persistent activation is associated with the production and secretion of various pro-inflammatory genes, cytokines, and chemokines, which may initiate or amplify neurodegenerative diseases. Bromodomain and extraterminal domain (BET) proteins are a group of epigenetic regulators that associate with acetylated histones and facilitate the transcription of target genes. A novel synthetic BET inhibitor, JQ1, was proven to exert immunosuppressive activities by inhibiting the expression of IL-6 and Tnf-α in macrophages. However, a genome-wide search for JQ1 molecular targets is largely unexplored in microglia. METHODS The present study was aimed at evaluating the anti-inflammatory function and underlying genes targeted by JQ1 in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells using two transcriptomic techniques: global transcriptomic biological duplicate RNA sequencing and quantitative real-time PCR. Associated biological pathways and functional gene ontology were also evaluated. RESULTS With a cutoff value of P ≤ 0.01 and fold change ≥1.5 log2, the expression level of 214 and 301 genes, including pro-inflammatory cytokine, chemokine, and transcription factors, was found to be upregulated in BV-2 cells stimulated with LPS for 2 and 4 h, respectively. Among these annotated genes, we found that JQ1 selectively reduced the expression of 78 and 118 genes (P ≤ 0.01, and fold change ≥ 1.5, respectively). Importantly, these inflammatory genes were not affected by JQ1 treatment alone. Furthermore, we confirmed that JQ1 reduced the expression of key inflammation- and immunity-related genes as well as cytokines/chemokines in the supernatants of LPS-treated primary microglial cells isolated from 3-day-old ICR mice. Utilizing functional group analysis, the genes affected by JQ1 were classified into four categories related to biological regulation, immune system processes, and response to stimuli. Moreover, the biological pathways and functional genomics obtained in this study may facilitate the suppression of different key inflammatory genes through JQ1-treated BV-2 microglial cells. CONCLUSIONS These unprecedented results suggest the BET inhibitor JQ1 as a candidate for the prevention or therapeutic treatment of inflammation-mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Amitabh Das
- Department of Bionanotechnology, Hanyang University, 222 Wangsimni-ro, Seoul, 133-791, South Korea.
| | - Jin Choul Chai
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Sun Hwa Kim
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Nishi Morya
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Kyoung Sun Park
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Young Seek Lee
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea. .,Department of Bionanotechnology, Hanyang University, 222 Wangsimni-ro, Seoul, 133-791, South Korea.
| |
Collapse
|
11
|
Das A, Chai JC, Jung KH, Das ND, Kang SC, Lee YS, Seo H, Chai YG. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells. Exp Cell Res 2014; 328:361-78. [PMID: 25193078 DOI: 10.1016/j.yexcr.2014.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/21/2014] [Accepted: 08/19/2014] [Indexed: 01/05/2023]
Abstract
JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53(-/-) NE-4Cs). We determined the effect of LPS as a model of inflammation in p53(-/-) NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53(-/-) NE-4Cs and in LPS-stimulated JMJD2A-kd p53(-/-) NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed.
Collapse
Affiliation(s)
- Amitabh Das
- Department of Bionanotechnology, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Jin Choul Chai
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Kyoung Hwa Jung
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Nando Dulal Das
- Clinical Research Centre, Inha University School of Medicine, Incheon 400-711, Republic of Korea.
| | - Sung Chul Kang
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Young Seek Lee
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Hyemyung Seo
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul 133-791, Republic of Korea; Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
12
|
Histone demethylase Jumonji D3 (JMJD3/KDM6B) at the nexus of epigenetic regulation of inflammation and the aging process. J Mol Med (Berl) 2014; 92:1035-43. [DOI: 10.1007/s00109-014-1182-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/27/2014] [Accepted: 06/05/2014] [Indexed: 02/03/2023]
|