1
|
Weniger MA, Seifert M, Küppers R. B Cell Differentiation and the Origin and Pathogenesis of Human B Cell Lymphomas. Methods Mol Biol 2025; 2865:1-30. [PMID: 39424718 DOI: 10.1007/978-1-0716-4188-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation in the germinal center reaction. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Most B cell lymphomas require B cell antigen receptor expression, and in several instances chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Most B cell malignancies derive from germinal center B cells, most likely due to the high proliferative activity of these B cells and aberrant mutations caused by their naturally active mutagenic processes.
Collapse
Affiliation(s)
- Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical School, Düsseldorf, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
2
|
Thermodynamics of interaction between polyreactive immunoglobulins and immobilized antigen. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.05.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
3
|
Bobrovnik SA, Ogloblya OV, Demchenko MO, Komisarenko SV. Kinetics of interaction between polyreactive immunoglobulins and antigen. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
4
|
Bobrovnik SA, Demchenko MO, Komisarenko SV. Kinetics of interaction between polyreactive immunoglobulins and antigen. The theory. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.04.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
5
|
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Many B cell lymphomas require B cell antigen receptor expression, and in several instances, chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Many B cell malignancies derive from germinal center B cells, most likely because of the high proliferation rate of these cells and the high activity of mutagenic processes.
Collapse
|
6
|
Evaluation of antiproliferative activity of pyrazolothiazolopyrimidine derivatives. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Ji L, Chen L, Wu P, Gervasio DF, Cai C. Highly Selective Fluorescence Determination of the Hematin Level in Human Erythrocytes with No Need for Separation from Bulk Hemoglobin. Anal Chem 2016; 88:3935-44. [DOI: 10.1021/acs.analchem.6b00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lijuan Ji
- Jiangsu
Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, National and Local Joint
Engineering Research Center of Biomedical Functional Materials, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Li Chen
- Jiangsu
Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, National and Local Joint
Engineering Research Center of Biomedical Functional Materials, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Ping Wu
- Jiangsu
Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, National and Local Joint
Engineering Research Center of Biomedical Functional Materials, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Dominic F. Gervasio
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 East James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Chenxin Cai
- Jiangsu
Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, National and Local Joint
Engineering Research Center of Biomedical Functional Materials, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| |
Collapse
|
8
|
Roumenina LT, Rayes J, Lacroix-Desmazes S, Dimitrov JD. Heme: Modulator of Plasma Systems in Hemolytic Diseases. Trends Mol Med 2016; 22:200-213. [PMID: 26875449 DOI: 10.1016/j.molmed.2016.01.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/15/2022]
Abstract
Hemolytic diseases such as sickle-cell disease, β-thalassemia, malaria, and autoimmune hemolytic anemia continue to present serious clinical hurdles. In these diseases, lysis of erythrocytes causes the release of hemoglobin and heme into plasma. Extracellular heme has strong proinflammatory potential and activates immune cells and endothelium, thus contributing to disease pathogenesis. Recent studies have revealed that heme can interfere with the function of plasma effector systems such as the coagulation and complement cascades, in addition to the activity of immunoglobulins. Any perturbation in such functions may have severe pathological consequences. In this review we analyze heme interactions with coagulation, complement, and immunoglobulins. Deciphering such interactions to better understand the complex pathogenesis of hemolytic diseases is pivotal.
Collapse
Affiliation(s)
- Lubka T Roumenina
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Unité Mixte de Recherche en Santé (UMRS 1138), Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F75006 Paris, France.
| | - Julie Rayes
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Sébastien Lacroix-Desmazes
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Unité Mixte de Recherche en Santé (UMRS 1138), Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F75006 Paris, France
| | - Jordan D Dimitrov
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Unité Mixte de Recherche en Santé (UMRS 1138), Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F75006 Paris, France.
| |
Collapse
|
9
|
Aich A, Freundlich M, Vekilov PG. The free heme concentration in healthy human erythrocytes. Blood Cells Mol Dis 2015; 55:402-9. [PMID: 26460266 DOI: 10.1016/j.bcmd.2015.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023]
Abstract
Heme, the prosthetic group of hemoglobin, may be released from its host due to an intrinsic instability of hemoglobin and accumulate in the erythrocytes. Free heme is in the form of hematin (Fe(3+) protoporphyrin IX OH) and follows several pathways of biochemical toxicity to tissues, cells, and organelles since it catalyzes the production of reactive oxygen species. To determine concentration of soluble free heme in human erythrocytes, we develop a new method. We lyse the red blood cells and isolate free heme from hemoglobin by dialysis. We use the heme to reconstitute horseradish peroxidase (HRP) from an excess of the apoenzyme and determine the HRP reaction rate from the evolution of the emitted luminescence. We find that in a population of five healthy adults the average free heme concentration in the erythrocytes is 21±2μM, ca. 100× higher than previously determined. Tests suggest that the lower previous value was due to the use of elevated concentrations of NaCl, which drive hematin precipitation and re-association with apoglobin. We show that the found hematin concentration is significantly higher than estimates based on equilibrium release and the known hematin dimerization. The factors that lead to enhanced heme release remain an open question.
Collapse
Affiliation(s)
- Anupam Aich
- Department of Chemical and Biomolecular Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Melissa Freundlich
- Department of Chemical and Biomolecular Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA; École Nationale Supérieure de Chimie de Paris, 11, rue Pierre et Marie Curie, 75231 PARIS Cedex 05, France
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA; Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| |
Collapse
|
10
|
Hadzhieva M, Vassilev TL, Roumenina LT, Bayry J, Kaveri SV, Lacroix-Desmazes S, Dimitrov JD. Mechanism and Functional Implications of the Heme-Induced Binding Promiscuity of IgE. Biochemistry 2015; 54:2061-72. [DOI: 10.1021/bi501507m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maya Hadzhieva
- Institute
of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | - Lubka T. Roumenina
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Jagadeesh Bayry
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Srinivas V. Kaveri
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Sébastien Lacroix-Desmazes
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Jordan D. Dimitrov
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| |
Collapse
|