1
|
A Novel Approach of Antiviral Drugs Targeting Viral Genomes. Microorganisms 2022; 10:microorganisms10081552. [PMID: 36013970 PMCID: PMC9414836 DOI: 10.3390/microorganisms10081552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of viral diseases, which cause morbidity and mortality in animals and humans, are increasing annually worldwide. Vaccines, antiviral drugs, and antibody therapeutics are the most effective tools for combating viral infection. The ongoing coronavirus disease 2019 pandemic, in particular, raises an urgent need for the development of rapid and broad-spectrum therapeutics. Current antiviral drugs and antiviral antibodies, which are mostly specific at protein levels, have encountered difficulties because the rapid evolution of mutant viral strains resulted in drug resistance. Therefore, degrading viral genomes is considered a novel approach for developing antiviral drugs. The current article highlights all potent candidates that exhibit antiviral activity by digesting viral genomes such as RNases, RNA interference, interferon-stimulated genes 20, and CRISPR/Cas systems. Besides that, we introduce a potential single-chain variable fragment (scFv) that presents antiviral activity against various DNA and RNA viruses due to its unique nucleic acid hydrolyzing characteristic, promoting it as a promising candidate for broad-spectrum antiviral therapeutics.
Collapse
|
2
|
Pang Q, Chen Y, Mukhtar H, Xiong J, Wang X, Xu T, Hammock BD, Wang J. Camelization of a murine single-domain antibody against aflatoxin B 1 and its antigen-binding analysis. Mycotoxin Res 2022; 38:51-60. [PMID: 35023020 PMCID: PMC8754551 DOI: 10.1007/s12550-021-00433-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
Aflatoxin B1 (AFB1), a highly toxic mycotoxin, always contaminated in a variety of agricultural products. Camelid variable domain of heavy chain antibody (VHH) is a noteworthy reagent in immunoassay, owing to its excellent characteristics. Immunization of camelid animals is a straightforward strategy to produce VHHs. In this study, to avoid the dependence on the large animals, the camelized, murine antibody (cVHs) against AFB1 was prepared in vitro based on the identities between murine VH and camelid VHH and then to develop an immunoassay for AFB1. A murine anti-AFB1 VH fragment (VH-2E6) was selected for camelization through replacement of conserved hydrophobic residues in framework region 2 (FR2) (cVH-FR2), point mutation at position 103 in the FR4 region (cVH-103), and CDR3-grafted with a high AFB1-affinity VHH (cVH-Nb26). The cVH-Nb26 had a yield of 5 mg/L as refolded protein expressed from Escherichia coli and 10 mg/L expressed from Pichia pastoris. Compared with anti-AFB1 single-chain fragment variable (scFv) 2E6, cVH-Nb26 performed more than 20-fold enhancement of AFB1-binding interactions. Although the AFB1-affinity of cVH-Nb26 cannot meet the application requirement in the present form, our study provides effective strategies for preparation of camelized antibody in vitro, which could be a promising immunoreagent for AFB1 detection.
Collapse
Affiliation(s)
- Qian Pang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanhong Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hina Mukhtar
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jing Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ting Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Bruce D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Jia Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
3
|
Wang F, Wang Y, Wan Z, Shao H, Qian K, Ye J, Qin A. Generation of a recombinant chickenized monoclonal antibody against the neuraminidase of H9N2 avian influenza virus. AMB Express 2020; 10:151. [PMID: 32816156 PMCID: PMC7441100 DOI: 10.1186/s13568-020-01086-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
We previously reported a monoclonal antibody (mAb), 1G8, against the neuraminidase (NA) of H9N2 avian influenza virus (AIV) with significant NA inhibitory activity. To generate a recombinant chickenized mAb (RCmAb) against the NA of H9N2 AIV for passive immunization in poultry, the gene of the fragment of antigen binding (Fab) of mAb 1G8 was cloned and fused with the fragment crystallizable (Fc) gene of chicken IgY. The RCmAb 1G8 was expressed in COS-1 cells and could be detected in cell culture supernatant. The results of NA inhibitory activity tests of the RCmAb 1G8 in an enzyme-linked lectin assay (ELLA) and a microneutralization (MN) assay showed that the RCmAb 1G8 maintained significant NA inhibitory activity and neutralizing ability. This is the first chickenized antibody against AIV, which would be a good candidate for passive immunization in poultry.
Collapse
Affiliation(s)
- Fei Wang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yajuan Wang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhimin Wan
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, No.12 East Wenhui Road, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Choi J, Kim M, Lee J, Seo Y, Ham Y, Lee J, Lee J, Kim JK, Kwon MH. Antigen-binding affinity and thermostability of chimeric mouse-chicken IgY and mouse-human IgG antibodies with identical variable domains. Sci Rep 2019; 9:19242. [PMID: 31848417 PMCID: PMC6917740 DOI: 10.1038/s41598-019-55805-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/18/2019] [Indexed: 01/01/2023] Open
Abstract
Constant (C)-region switching of heavy (H) and/or light (L) chains in antibodies (Abs) can affect their affinity and specificity, as demonstrated using mouse, human, and chimeric mouse-human (MH) Abs. However, the consequences of C-region switching between evolutionarily distinct mammalian and avian Abs remain unknown. To explore C-region switching in mouse-chicken (MC) Abs, we investigated antigen-binding parameters and thermal stability of chimeric MC-6C407 and MC-3D8 IgY Abs compared with parental mouse IgGs and chimeric MH Abs (MH-6C407 IgG and MH-3D8 IgG) bearing identical corresponding variable (V) regions. The two MC-IgYs exhibited differences in antigen-binding parameters and thermal stability from their parental mouse Abs. However, changes were similar to or less than those between chimeric MH Abs and their parental mouse Abs. The results demonstrate that mammalian and avian Abs share compatible V-C region interfaces, which may be conducive for the design and utilization of mammalian-avian chimeric Abs.
Collapse
Affiliation(s)
- Juho Choi
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Minjae Kim
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Joungmin Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Youngsil Seo
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Yeonkyoung Ham
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jihyun Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jeonghyun Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jin-Kyoo Kim
- Department of Microbiology, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, 51140, South Korea
| | - Myung-Hee Kwon
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea. .,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
5
|
Generation of single-chain Fv antibody fragments against Mu-2-related death-inducing gene in Escherichia coli. Mol Biol Rep 2019; 46:4027-4037. [PMID: 31073914 DOI: 10.1007/s11033-019-04852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/02/2019] [Indexed: 11/27/2022]
Abstract
Mu-2-related death-inducing (MuD) gene is involved in apoptosis in tumor cells. Although we have previously produced mouse monoclonal antibodies (MAbs) that specifically recognize human MuD, the application scope of MuD MAbs was restricted due to their mouse origin. Therefore, we attempted the generation of single-chain variable fragment (scFv) against MuD. The heavy- and light-chain variable region genes from two MuD hybridomas were isolated by PCR and joined by DNA encoding a (Gly4Ser1)3 linker. These scFv fragments were cloned into a phagemid vector and expressed as E-tagged fusion proteins in Escherichia coli HB2151. The reactivity of selected Abs was evaluated using ELISA. Selected MuDscFv Abs specifically recognized human MuD, retaining ~ 50% potency of the parent MAbs. MuDscFv-M3H9 recognized the middle region of MuD, while MuDscFv-C22B3 recognized a broad region. Intracellular expression of MuDscFvs-C22B3 protected cells from TRAIL-induced apoptosis. These MuDscFv Abs may help in the study of intracellular signaling pathway centered on MuD and of drug use target and points.
Collapse
|
6
|
Mala J, Puthong S, Maekawa H, Kaneko Y, Palaga T, Komolpis K, Sooksai S. Construction and sequencing analysis of scFv antibody fragment derived from monoclonal antibody against norfloxacin (Nor155). J Genet Eng Biotechnol 2017; 15:69-76. [PMID: 30647643 PMCID: PMC6296615 DOI: 10.1016/j.jgeb.2017.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/19/2017] [Indexed: 11/20/2022]
Abstract
Norfloxacin belongs to the group of fluoroquinolone antibiotics which has been approved for treatment in animals. However, its residues in animal products can pose adverse side effects to consumer. Therefore, detection of the residue in different food matrices must be concerned. In this study, a single chain variable fragment (scFv) that recognizes norfloxacin antibiotic was constructed. The cDNA was synthesized from total RNA of hybridoma cells against norfloxacin. Genes encoding VH and VL regions of monoclonal antibody against norfloxacin (Nor155) were amplified and size of VH and VL fragments was 402 bp and 363 bp, respectively. The scFv of Nor155 was constructed by an addition of (Gly4Ser)3 as a linker between VH and VL regions and subcloned into pPICZαA, an expression vector of Pichia pastoris. The sequence of scFv Nor155 (GenBank No. AJG06891.1) was confirmed by sequencing analysis. The complementarity determining regions (CDR) I, II, and III of VH and VL were specified by Kabat method. The obtained recombinant plasmid will be useful for production of scFv antibody against norfloxacin in P. pastoris and further engineer scFv antibody against fluoroquinolone antibiotics.
Collapse
Affiliation(s)
- J. Mala
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - S. Puthong
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - H. Maekawa
- Yeast Genetic Resources Laboratory, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Y. Kaneko
- Yeast Genetic Resources Laboratory, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - T. Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - K. Komolpis
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - S. Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|