1
|
Tavallaii A, Meybodi KT, Nejat F, Habibi Z. Current Status of Research on Targeted Therapy Against Central Nervous System Tumors in Low- and Lower-Middle-Income Countries. World Neurosurg 2023; 174:74-80. [PMID: 36918096 DOI: 10.1016/j.wneu.2023.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
OBJECTIVE In recent decades, a significant body of research has focused on targeted therapies for the treatment of central nervous system (CNS) tumors to enhance the effectiveness of management strategies. However, most of these efforts have been centered in high-income countries, which renders the generalizability of their results to low- and middle-income countries questionable. Therefore, in this review, we systematically investigated the status of research conducted on targeted therapy for CNS tumors in low- and lower-middle-income countries to elucidate the contribution of these countries in advancing neuro-oncology. METHODS A systematic search of 3 databases was performed using a predefined search strategy. After screening the articles based on our inclusion/exclusion criteria, the data were extracted to a predesigned Excel worksheet. RESULTS A review of 44 included studies showed that India, Iran, and Lebanon were the only countries with a contribution to this field. All included studies were laboratory or animal experiments, and there were no clinical studies in this field. The most investigated CNS tumor was malignant glioma, and gene-targeted therapy was the most investigated category of targeted therapies in these countries. CONCLUSIONS Low- and lower-middle-income countries comprise more than half of the world population, but they are deprived of targeted therapies against CNS tumors. Although there are basic experiments performed on this subject, they originate in a limited number of these countries. Therefore, targeted therapy is in its preliminary stage in these countries.
Collapse
Affiliation(s)
- Amin Tavallaii
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Tayyebi Meybodi
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Nejat
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Habibi
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Chaudhuri S, Acharya S, Chaudhuri S. Therapeutic intervention of glioma with the novel antineoplastic agent T11TS: the story so far. Immunotherapy 2022; 14:1263-1277. [PMID: 36004447 DOI: 10.2217/imt-2021-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The disease relevance of novel therapeutic agent T11TS, established first by the authors' group, was shown to ameliorate experimental glioma through multimodal mechanistic activities. T11TS reverses immunosuppression in glioma, causing profound effects on immune potentiation via peripheral, intracranial and hematopoietic cells. T-cell signaling in glioma is reversed by T11TS, modulating cytokine levels and favoring apoptotic killing of glioma cells. T11TS arrests the glioma cell cycle at the G1 phase via activation of p21. VEGF downregulation hypophosphorylates the Akt pathway. T11TS hinders endothelial cell progression and metastasis by arresting matrix degradation, inhibiting the Ras-Raf and Akt-PTEN pathways and initiating inflammatory changes, causing apoptosis. T11TS is effective against in vitro human glioma. Toxicity studies demonstrate that T11TS is nontoxic. The authors' study promise translational research with T11TS.
Collapse
Affiliation(s)
- Suhnrita Chaudhuri
- 4D Pharma Research Ltd, Life Sciences Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, UK, Formerly: Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| | - Sagar Acharya
- Department of Zoology, Vidyasagar University, Paschim Medinipur, West Bengal, 721102, India, Formerly: Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| | - Swapna Chaudhuri
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal, 700026, India
| |
Collapse
|
3
|
Sk Md OF, Hazra I, Datta A, Mondal S, Moitra S, Chaudhuri S, Das PK, Basu AK, Mishra R, Chaudhuri S. Regulation of key molecules of immunological synapse by T11TS immunotherapy abrogates Cryptococcus neoformans infection in rats. Mol Immunol 2020; 122:207-221. [PMID: 32388483 DOI: 10.1016/j.molimm.2020.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Cryptococcus neoformans infects and disseminates in hosts with diminished T cell responses. The immunomodulator T11TS (T11 target structure) had profound potential in glioma as well as C. neoformans infected model for disease amelioration. It is been established by our group that T11TS potentiates Calcineurin-NFAT pathway in T cells of C. neoformans infected rats. We investigated the upstream Immunological Synapse (IS) molecules that are vital for the foundation of initial signals for downstream signaling, differentiation and proliferation in T cells. Improved RANTES level in the T11TS treated groups suggests potential recruitment of T cells. Down-regulation of TCRαβ, CD3ζ, CD2, CD45 and CD28 molecules by cryptococcus were boosted after T11TS therapy. Heightened expression of inhibitory molecule CTLA-4 in cryptococcosis was dampened by T11TS. The decline of MHC I, MHC II and CD80 expression on macrophages by C. neoformans were enhanced by T11TS. The dampening of positive regulators and upsurge of negative regulators of the IS during cryptococcosis was reversed with T11TS therapy resulting in enhanced clearance of fungus from the lungs as envisaged by our histological studies. This preclinical study with T11TS opens a new prospect for potential immunotherapeutic intervention against the devastating C. neoformans infection with positive aspect for the long-term solution and a safer immunotherapeutic regimen.
Collapse
Affiliation(s)
- Omar Faruk Sk Md
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India; Department of Physiology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Iman Hazra
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Ankur Datta
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Somnath Mondal
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Saibal Moitra
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Suhnrita Chaudhuri
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, ECIM 6BQ, UK
| | - Prasanta Kumar Das
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Anjan Kumar Basu
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Roshnara Mishra
- Department of Physiology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Swapna Chaudhuri
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India.
| |
Collapse
|
4
|
Omar Faruk SM, Hazra I, Mondal S, Datta A, Moitra S, Das PK, Mishra R, Chaudhuri S. T11TS immunotherapy potentiates the repressed calcineurin-NFAT signalling pathway of T cells in Cryptococcus neoformans infected rats: a cue towards T-cell activation for antifungal immunity. J Appl Microbiol 2020; 129:753-767. [PMID: 32145053 DOI: 10.1111/jam.14631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
AIMS To examine the modulation of the interacting partners of the calcineurin (CaN)-NFAT pathway in T cells during Cryptococcus neoformans fungal infection and post-T11TS immunotherapy. METHODS AND RESULTS Wistar rats were infected with C. neoformans and followed by immunotherapy with immune-potentiator T11TS. T cells were analysed by flow cytometry, immunoblotting and nuclear translocation study. The signalling proteins LCK, FYN, LAT, PLCγ1 and CaN in T cells were regulated by C. neoformans infection resulting in reduced nuclear translocation of NFAT and IL-2 expression. Following T11TS immunotherapy, the expressions of the above-mentioned proteins were boosted and thus resulting in the clearance of C. neoformans from lung and spleen. CONCLUSIONS The precise mechanism of suppression of the T-cell function by C. neoformans is still unknown. Previously, we have shown that T11TS positively regulates the function of T cells to abrogate glioma and other immunosuppressive conditions. T11TS immunotherapy increased the expression of the above signalling partners of the CaN-NFAT pathway in T cells and improved nuclear retention of NFAT. As a result, an increased IL-2 expression leads to activation and proliferation of T cells. SIGNIFICANCE AND IMPACT OF THE STUDY Our results demonstrate the role of T11TS in restoring the CaN-NFAT signalling pathway in T cells. It identifies T11TS as an immunotherapeutic agent with potential clinical outcomes to counteract C. neoformans infection.
Collapse
Affiliation(s)
- S M Omar Faruk
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India.,Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - I Hazra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - S Mondal
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - A Datta
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - S Moitra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - P K Das
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - R Mishra
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - S Chaudhuri
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Mitchell D, Chintala S, Fetcko K, Henriquez M, Tewari BN, Ahmed A, Bentley RT, Dey M. Common Molecular Alterations in Canine Oligodendroglioma and Human Malignant Gliomas and Potential Novel Therapeutic Targets. Front Oncol 2019; 9:780. [PMID: 31475119 PMCID: PMC6702544 DOI: 10.3389/fonc.2019.00780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/31/2019] [Indexed: 01/05/2023] Open
Abstract
Spontaneous canine (Canis lupus) oligodendroglioma (ODG) holds tremendous potential as an immunocompetent large animal model of human malignant gliomas (MG). However, the feasibility of utilizing this model in pre-clinical studies depends on a thorough understanding of the similarities and differences of the molecular pathways associated with gliomas between the two species. We have previously shown that canine ODG has an immune landscape and expression pattern of commonly described oncogenes similar to that of human MG. In the current study, we performed a comprehensive analysis of canine ODG RNAseq data from 4 dogs with ODG and 2 normal controls to identify highly dysregulated genes in canine tumors. We then evaluated the expression of these genes in human MG using Xena Browser, a publicly available database. STRING-database inquiry was used in order to determine the suggested protein associations of these differentially expressed genes as well as the dysregulated pathways commonly enriched by the protein products of these genes in both canine ODG and human MG. Our results revealed that 3,712 (23%) of the 15,895 differentially expressed genes demonstrated significant up- or downregulation (log2-fold change > 2.0). Of the 3,712 altered genes, ~50% were upregulated (n = 1858) and ~50% were downregulated (n = 1854). Most of these genes were also found to have altered expression in human MG. Protein association and pathway analysis revealed common pathways enriched by members of the up- and downregulated gene categories in both species. In summary, we demonstrate that a similar pattern of gene dysregulation characterizes both human MG and canine ODG and provide additional support for the use of the canine model in order to therapeutically target these common genes. The results of such therapeutic targeting in the canine model can serve to more accurately predict the efficacy of anti-glioma therapies in human patients.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sreenivasulu Chintala
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kaleigh Fetcko
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mario Henriquez
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brij N Tewari
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Atique Ahmed
- Department of Neurological Surgery, Northwestern University, Chicago, IL, United States
| | - R Timothy Bentley
- Department of Veterinary Clinical Sciences, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Mahua Dey
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Hazra I, Sk Md OF, Datta A, Mondal S, Moitra S, Singh MK, Chaudhuri S, Das PK, Basu AK, Dhar I, Basu N, Chaudhuri S. T11TS immunotherapy augments microglial and lymphocyte protective immune responses against Cryptococcus neoformans in the brain. Scand J Immunol 2018; 89:e12733. [PMID: 30450625 DOI: 10.1111/sji.12733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans, the encapsulated yeast acquired through inhalation, remains localized in lungs, but harbours the CNS in immunocompromised individuals. Several treatment regimes have failed combating this disease totally, but long-term usage of drugs leads to organ damage. As T11-target structure (T11TS) has documented profound immune potentiation, we aimed to investigate the role of microglia, pivotal immune cells of brain in ameliorating cryptococcosis, with T11TS immunotherapy. Murine model with C neoformans infection was prepared by intraperitoneal injection and the brains of rats examined 7 days post-infections for histopathology by PAS and Alcian blue staining corroborated with organ fungal burden evidencing restorative T11TS action on Cryptococcal meningitis. Immunotherapy with three doses of T11TS, a CD2 ligand, in C neoformans infected rats, upregulates toll-like receptors 2, -4 and -9 of microglia, indicating increased phagocytosis of the fungus. Flowcytometric analysis revealed increased numbers of T11TS treated brain infiltrating CD4+ and CD8+ T-lymphocytes along with increased MHC I and MHC II on microglia, activating the infiltrating lymphocytes aiding the killing mechanism. Present study also indicated that T11TS increased production of Th1 inflammatory cytokines conducive to fungal elimination while the inhibitory Th2 cytokines were dampened. This preclinical study is first of its kind to show that T11TS effected profound immune stimulation of microglial activity of C neoformans infected rats eradicating residual fungal burden from the brain and can be a useful therapeutic strategy in fighting against this deadly disease.
Collapse
Affiliation(s)
- Iman Hazra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Omar Faruk Sk Md
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Ankur Datta
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Somnath Mondal
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Saibal Moitra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Manoj Kumar Singh
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Suhnrita Chaudhuri
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Prasanta Kumar Das
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Anjan Kumar Basu
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, Kolkata, India
| | - Indranil Dhar
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Nandita Basu
- Department of Pathology, School of Tropical Medicine, Kolkata, India
| | - Swapna Chaudhuri
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| |
Collapse
|
7
|
Chaudhuri S, Singh MK, Bhattacharya D, Datta A, Hazra I, Mondal S, Faruk Sk Md O, Ronsard L, Ghosh TK, Chaudhuri S. T11TS immunotherapy repairs PI3K-AKT signaling in T-cells: Clues toward enhanced T-cell survival in rat glioma model. J Cell Physiol 2017; 233:759-770. [PMID: 28608562 DOI: 10.1002/jcp.26047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/12/2017] [Indexed: 01/20/2023]
Abstract
Malignant glioma is the most fatal of astrocytic lineage tumors despite therapeutic advances. Onset and progression of gliomas is accompanied by severe debilitation of T-cell defense and T-cell survival. One of the chief contributors to T-cell survival downstream of activation is the PI3K-AKT pathway. Our prior studies showed that the novel immunotherapeutic molecule T11-target structure (T11TS) blocks T-cell apoptosis in glioma. We also showed activation of immunological synapse components and calcineurin-NFAT pathway following T11TS immunotherapy of glioma-bearing rats. This lead to investigations whether such T-cell activation upon T11TS therapy translates into activation of downstream PI3K/AKT signals which may be related to observed blockade of T-cell apoptosis. For the purpose, we assessed by flowcytometry and immunoblotting, expressions of PI3K, PDK1, AKT, p-AKT, and PTEN in splenic T-cells of normal, experimentally-induced glioma-bearing rats and glioma-bearing rats receiving first, second and third doses of T11TS. We also determined comparative nuclear translocation of NF-κB across groups. We found significant increases in T-cell expressions of PDK1, PI3K, and p-AKT in T11TS-treated animal groups compared to sharp downregulations in glioma. AKT levels remained unchanged across groups. PTEN levels declined sharply after T11TS immunotherapy. T11TS also caused enhanced NF-κB translocation to the T-cell nucleus compared to glioma group. Results showed heightened activation of the PI3K-AKT pathway in glioma-bearing rats following T11TS immunotherapy. These results illustrate the novel role of T11TS immunotherapy in ameliorating the PI3K pathway in T-cells in glioma-bearing animals to enhance T-cell survival, according greater defense against glioma. The study thus has far-reaching clinical outcomes.
Collapse
Affiliation(s)
- Suhnrita Chaudhuri
- Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India.,Department of Physiology, University of Calcutta, Kolkata, West Bengal 700009, India
| | - Manoj K Singh
- Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| | - Debanjan Bhattacharya
- Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| | - Ankur Datta
- Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| | - Iman Hazra
- Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| | - Somnath Mondal
- Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| | - Omar Faruk Sk Md
- Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| | - Larance Ronsard
- Virology Lab, National Institute of Immunology, New Delhi 110067, India
| | - Tushar K Ghosh
- Department of Physiology, University of Calcutta, Kolkata, West Bengal 700009, India
| | - Swapna Chaudhuri
- Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| |
Collapse
|
8
|
Ronsard L, Ganguli N, Singh VK, Mohankumar K, Rai T, Sridharan S, Pajaniradje S, Kumar B, Rai D, Chaudhuri S, Coumar MS, Ramachandran VG, Banerjea AC. Impact of Genetic Variations in HIV-1 Tat on LTR-Mediated Transcription via TAR RNA Interaction. Front Microbiol 2017; 8:706. [PMID: 28484443 PMCID: PMC5399533 DOI: 10.3389/fmicb.2017.00706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 01/10/2023] Open
Abstract
HIV-1 evades host defense through mutations and recombination events, generating numerous variants in an infected patient. These variants with an undiminished virulence can multiply rapidly in order to progress to AIDS. One of the targets to intervene in HIV-1 replication is the trans-activator of transcription (Tat), a major regulatory protein that transactivates the long terminal repeat promoter through its interaction with trans-activation response (TAR) RNA. In this study, HIV-1 infected patients (n = 120) from North India revealed Ser46Phe (20%) and Ser61Arg (2%) mutations in the Tat variants with a strong interaction toward TAR leading to enhanced transactivation activities. Molecular dynamics simulation data verified that the variants with this mutation had a higher binding affinity for TAR than both the wild-type Tat and other variants that lacked Ser46Phe and Ser61Arg. Other mutations in Tat conferred varying affinities for TAR interaction leading to differential transactivation abilities. This is the first report from North India with a clinical validation of CD4 counts to demonstrate the influence of Tat genetic variations affecting the stability of Tat and its interaction with TAR. This study highlights the co-evolution pattern of Tat and predominant nucleotides for Tat activity, facilitating the identification of genetic determinants for the attenuation of viral gene expression.
Collapse
Affiliation(s)
- Larance Ronsard
- Laboratory of Virology, National Institute of ImmunologyDelhi, India.,Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalDelhi, India
| | - Nilanjana Ganguli
- Laboratory of Virology, National Institute of ImmunologyDelhi, India
| | - Vivek K Singh
- Centre for Bioinformatics, School of Life Sciences, Pondicherry UniversityPondicherry, India
| | - Kumaravel Mohankumar
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India.,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College StationTX, USA
| | - Tripti Rai
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical SciencesDelhi, India
| | - Subhashree Sridharan
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India.,Department of Symptom Research, The University of Texas MD Anderson Cancer Center, HoustonTX, USA
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India
| | - Binod Kumar
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, ChicagoIL, USA
| | - Devesh Rai
- Department of Microbiology, All India Institute of Medical SciencesDelhi, India
| | - Suhnrita Chaudhuri
- Department of Neurological Surgery, Northwestern University, ChicagoIL, USA
| | - Mohane S Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry UniversityPondicherry, India
| | | | - Akhil C Banerjea
- Laboratory of Virology, National Institute of ImmunologyDelhi, India
| |
Collapse
|
9
|
Mondal S, Hazra I, Datta A, Sk Md OF, Moitra S, Tripathi SK, Chaudhuri S. T11TS repress gliomagenic apoptosis of bone marrow hematopoietic stem cells. J Cell Physiol 2017; 233:269-290. [PMID: 28233371 DOI: 10.1002/jcp.25874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/22/2017] [Indexed: 12/24/2022]
Abstract
Combating gliomagenic global immunosuppression is one of the emerging key for improving prognosis in malignant glioma. Apoptosis plays a pivotal role within the adult hematopoietic system particularly in regulating the cells of immune system. Gliomagenic regulation of apoptotic mediators within bone marrow milieu has not been elucidated. We previously demonstrated that administration of membrane glycopeptides T11 target structure (T11TS) not only rejuvenate bone marrow hematopoietic stem cells (BMHSCs) from glioma mediated hibernation by inhibiting gliomagenic overexpression of Ang-1/Tie-2 but also stimulate glioma mediated diminution of expression CD34, c-kit, and Sca-1 markers. In the present study, we investigated the impact of glioma on apoptotic signaling cascades of BMHSCs and consequences following T11TS therapy. Bone marrow smear and Annexin V staining confirm gliomagenic acceleration of apoptotic fate of BMHSCs whereas T11TS treatment in glioma-bearing rats disrupted apoptosis of BMHSCs. Flowcytometry, immunoblotting, and immunofluorescence imagining results revealed multi potent T11TS not only significantly downregulates gliomagenic overexpression of Fas, Fas L, Bid, and caspase-8, the pro-apoptotic extrinsic mediators but also strongly inhibits cytosolic release of cytochrome-c, Apf-1, and Bax to deactivate gliomagenic caspase-9, 3 the key intrinsic apoptotic mediators followed by up modulation of anti-apoptotic Bcl-2 in glioma associated HSCs. T11TS is also able to diminish the perforin-granzyme B mediated apoptotic verdict of BMHSCs during gliomagenesis. The anti-apoptotic action of T11TS on glioma associated BMHSCs provide a crucial insight into how T11TS exerts its immunomodulatory action against glioma mediated immune devastation.
Collapse
Affiliation(s)
- Somnath Mondal
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.,Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Iman Hazra
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Ankur Datta
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.,Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Omar Faruk Sk Md
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Saibal Moitra
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Santanu Kumar Tripathi
- Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Swapna Chaudhuri
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Genetic and functional characterization of HIV-1 Vif on APOBEC3G degradation: First report of emergence of B/C recombinants from North India. Sci Rep 2015; 5:15438. [PMID: 26494109 PMCID: PMC4616021 DOI: 10.1038/srep15438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/02/2015] [Indexed: 12/12/2022] Open
Abstract
HIV-1 is characterized by high genetic heterogeneity which is a challenge for developing therapeutics. Therefore, it is necessary to understand the extent of genetic variations that HIV is undergoing in North India. The objective of this study was to determine the role of genetic and functional role of Vif on APOBEC3G degradation. Vif is an accessory protein involved in counteracting APOBEC3/F proteins. Genetic analysis of Vif variants revealed that Vif C variants were closely related to South African Vif C whereas Vif B variants and Vif B/C showed distinct geographic locations. This is the first report to show the emergence of Vif B/C in our population. The functional domains, motifs and phosphorylation sites were well conserved. Vif C variants differed in APOBEC3G degradation from Vif B variants. Vif B/C revealed similar levels of APOBEC3G degradation to Vif C confirming the presence of genetic determinants in C-terminal region. High genetic diversity was observed in Vif variants which may cause the emergence of more complex and divergent strains. These results reveal the genetic determinants of Vif in mediating APOBEC3G degradation and highlight the genetic information for the development of anti-viral drugs against HIV. Importance: Vif is an accessory HIV-1 protein which plays significant role in the degradation of human DNA-editing factor APOBEC3G, thereby impeding the antiretroviral activity of APOBEC3G. It is known that certain natural polymorphisms in Vif could degrade APOBEC3G relatively higher rate, suggesting its role in HIV-1 pathogenesis. This is the first report from North India showcasing genetic variations and novel polymorphisms in Vif gene. Subtype C is prevalent in India, but for the first time we observed putative B/C recombinants with a little high ability to degrade APOBEC3G indicating adaptation and evolving nature of virus in our population. Indian Vif C variants were able to degrade APOBEC3G well in comparison to Vif B variants. These genetic changes were most likely selected during adaptation of HIV to our population. These results elucidate that the genetic determinants of Vif and highlights the potential targets for therapeutics.
Collapse
|