1
|
Britt JL, Greene MA, Klotz JL, Justice SM, Powell RR, Noorai RE, Bruce TF, Duckett SK. Mycotoxin ingestion during late gestation alters placentome structure, cotyledon transcriptome, and fetal development in pregnant sheep. Hum Exp Toxicol 2022; 41:9603271221119177. [PMID: 35947831 DOI: 10.1177/09603271221119177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ergot alkaloids, a class of mycotoxins, induce vasoconstriction when consumed by animals and humans. Pregnant ewes (n = 16; 81.2 kg ± 7.7) were assigned fed endophyte-infected tall fescue seed (E+; 4.14 μg ergovaline + ergovalinine/g seed) or a control diet (CON; 0 μg ergovaline + ergovalinine) for increasing duration during late gestation (from gd86 to gd110 or gd133) to examine changes in placentome morphology and mRNA transcriptome, and fetal development. Exposure to E+ fescue reduced serum prolactin concentrations at gd110 and gd133 demonstrating treatment efficacy. For control ewes, cotyledon and total placentome weights decreased with advancing gestation due to remodeling of placental tissues; however, cotyledon and placentome weight did not change with advancing gestation in E+ fed ewes. Fetal brain sparing was evident in E+ exposed fetuses at gd110 and gd133 compared to CON, which demonstrates asymmetrical growth and intrauterine growth restriction. Mycotoxin exposure (E+) resulted in differential expression of 22 genes in the cotyledon tissue at gd110 but only one gene at gd133 compared to CON. These results suggest that the response to mycotoxin exposure in the pregnant sheep model has an immediate impact on placental remodeling and fetal development that persists throughout the duration of the exposure period.
Collapse
Affiliation(s)
- J L Britt
- Department of Animal and Veterinary Sciences, 2545Clemson University, Clemson, SC, USA
| | - M A Greene
- Department of Animal and Veterinary Sciences, 2545Clemson University, Clemson, SC, USA
| | - J L Klotz
- Forage Production Research Unit, USDA-ARS, Lexington, KY, USA
| | - S M Justice
- Department of Animal and Veterinary Sciences, 2545Clemson University, Clemson, SC, USA
| | - R R Powell
- Clemson University Light Imaging Facility, 2545Clemson University, Clemson, SC, USA
| | - R E Noorai
- Clemson University Genomics and Bioinformatics Facility, 2545Clemson University, Clemson, SC, USA
| | - T F Bruce
- Clemson University Light Imaging Facility, 2545Clemson University, Clemson, SC, USA
| | - S K Duckett
- Department of Animal and Veterinary Sciences, 2545Clemson University, Clemson, SC, USA
| |
Collapse
|
2
|
Serum Levels of Collectins Are Sustained During Pregnancy: Surfactant Protein D Levels Are Dysregulated Prior to Missed Abortion. Reprod Sci 2020; 27:1894-1908. [PMID: 32710236 DOI: 10.1007/s43032-020-00209-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
Abstract
About 15% of pregnant women undergo missed abortion (MA), wherein women do not experience cramping and vaginal bleeding. Dysregulation of the immune molecules and steroid hormones contribute to early pregnancy loss. Collectins- surfactant protein A (SP-A), surfactant protein D (SP-D), and mannose-binding lectin (MBL) are a group of innate immune molecules regulated by the steroid hormones. Reduced levels of SP-A and SP-D during the early gestation exhibited a significant association with the severe early onset preeclampsia. In order to determine the serum profile of collectins throughout the normal pregnancy and explore their predictive potential during the 8-12 weeks of gestation for MA, we examined a prospective cohort of pregnant women (n = 221). The serum levels of SP-A and SP-D were significantly downregulated in the normal pregnant women in all the three trimesters (n = 30) compared with the non-pregnant women (n = 20) and were not significantly different across the three trimesters. Fourteen of the women from the cohort underwent MA during the 14-20 weeks of gestation and exhibited a significant downregulation in the serum levels of SP-D during 8-12 weeks of gestation. A significant inhibition of the HTR-8/SVneo cell proliferation and migration in the presence of a recombinant fragment of human SP-D suggested the relevance of SP-D in placental development. We report here that the serum levels of SP-A, SP-D, and MBL are consistently maintained during pregnancy in the Indian cohort. Dysregulated serum levels of SP-D and P4/E2 ratio during the early first trimester may predict occurrence of MA.
Collapse
|
3
|
Madan T, Kishore U. Surfactant Protein D Recognizes Multiple Fungal Ligands: A Key Step to Initiate and Intensify the Anti-fungal Host Defense. Front Cell Infect Microbiol 2020; 10:229. [PMID: 32547959 PMCID: PMC7272678 DOI: 10.3389/fcimb.2020.00229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
With limited therapeutic options and associated severe adverse effects, fungal infections are a serious threat to human health. Innate immune response mediated by pattern recognition proteins is integral to host defense against fungi. A soluble pattern recognition protein, Surfactant protein D (SP-D), plays an important role in immune surveillance to detect and eliminate human pathogens. SP-D exerts its immunomodulatory activity via direct interaction with several receptors on the epithelial cells lining the mucosal tracts, as well as on innate and adaptive immune cells. Being a C-type lectin, SP-D shows calcium- and sugar-dependent interactions with several glycosylated ligands present on fungal cell walls. The interactome includes cell wall polysaccharides such as 1,3-β-D-glucan, 1,6-β-D-glucan, Galactosaminogalactan Galactomannan, Glucuronoxylomannan, Mannoprotein 1, and glycosylated proteins such as gp45, gp55, major surface glycoprotein complex (gpA). Recently, binding of a recombinant fragment of human SP-D to melanin on the dormant conidia of Aspergillus fumigatus was demonstrated that was not inhibited by sugars, suggesting a likely protein-protein interaction. Interactions of the ligands on the fungal spores with the oligomeric forms of full-length SP-D resulted in formation of spore-aggregates, increased uptake by phagocytes and rapid clearance besides a direct fungicidal effect against C. albicans. Exogenous administration of SP-D showed significant therapeutic potential in murine models of allergic and invasive mycoses. Altered susceptibility of SP-D gene-deficient mice to various fungal infections emphasized relevance of SP-D as an important sentinel of anti-fungal immunity. Levels of SP-D in the serum or lung lavage were significantly altered in the murine models and patients of fungal infections and allergies. Here, we review the cell wall ligands of clinically relevant fungal pathogens and allergens that are recognized by SP-D and their impact on the host defense. Elucidation of the molecular interactions between innate immune humoral such as SP-D and fungal pathogens would facilitate the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
4
|
Kale K, Vishwekar P, Balsarkar G, Jassawalla MJ, Sawant G, Madan T. Differential levels of surfactant protein A, surfactant protein D, and progesterone to estradiol ratio in maternal serum before and after the onset of severe early‐onset preeclampsia. Am J Reprod Immunol 2019; 83:e13208. [DOI: 10.1111/aji.13208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Kavita Kale
- Department of Innate Immunity ICMR‐National Institute for Research in Reproductive Health Mumbai India
| | - Pallavi Vishwekar
- Department of Obstetrics and Gynaecology Dr. DY Patil Medical College, Hospital and Research Centre Navi Mumbai Mumbai India
| | - Geetha Balsarkar
- Department of Obstetrics and Gynaecology Nowrosjee Wadia Maternity Hospital Mumbai India
| | | | - Ganpat Sawant
- Department of Obstetrics and Gynaecology Dr. DY Patil Medical College, Hospital and Research Centre Navi Mumbai Mumbai India
| | - Taruna Madan
- Department of Innate Immunity ICMR‐National Institute for Research in Reproductive Health Mumbai India
| |
Collapse
|
5
|
Di Giorgio NP, Bizzozzero Hiriart M, Surkin PN, López PV, Bourguignon NS, Dorfman VB, Bettler B, Libertun C, Lux-Lantos V. Multiple failures in the lutenising hormone surge generating system in GABAB1KO female mice. J Neuroendocrinol 2019; 31:e12765. [PMID: 31269532 DOI: 10.1111/jne.12765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Female mice lacking GABAB receptors, GABAB1KO, show disrupted oestrous cycles, reduced pregnancies and increased hypothalamic Gnrh1 mRNA expression, whereas anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) Kiss1 mRNA was not affected. In the present study, we characterise the important components of the gonadotrophic preovulatory surge, aiming to unravel the origin of this reproductive impairment. In GABAB1KO and wild-type (WT) females, we determined: (i) hypothalamic oestrogen receptor (ER)α and β and aromatase mRNA and protein expression; (ii) ovulation index and oestrus serum follicle-stimulating hormone (FSH) and pituitary Gnrh1r expression; (iii) in ovariectomised-oestradiol valerate-treated mice, we evaluated ex vivo hypothalamic gonadotrophin-releasing hormone (GnRH) pulsatility in the presence/absence of kisspeptin (Kiss-10, constant or pulsatile) and oestradiol (constant); and (iv) in ovariectomised-oestradiol silastic capsule-treated mice (proestrous-like environment), we evaluated morning and evening kisspeptin neurone activation (c-Fos+) and serum luteinising homrone (LH). In the medial basal hypothalamus of oestrus GABAB1KOs, aromatase and ERα mRNA and protein were increased, whereas ERβ was decreased. In GABAB1KOs, the ovulation index was decreased together with decreased first oestrus serum FSH and increased pituitary Gnrh1r mRNA. Under constant Kiss-10 stimulation, hypothalamic GnRH pulse frequency did not vary, although GnRH mass/pulse was increased in GABAB1KOs. In WTs, pulsatile Kiss-10 together with constant oestradiol significantly increased GnRH pulsatility, whereas, in GABAB1KOs, oestradiol alone increased GnRH pulsatility and this was reversed by pulsatile Kiss-10 addition. In GABAB1KOs AVPV/PeN kisspeptin neurones were similarly activated (c-Fos+) in the morning and evening, whereas WTs showed the expected, marked evening stimulation. LH correlated with activated kisspeptin cells in WT mice, whereas GABAB1KO mice showed high, similar LH levels both in the morning and evening. Taken together, all of these alterations point to impairment in the trigger of the preovulatory GnRH surge that entails the reproductive alterations described.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Pablo N Surkin
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Paula V López
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Nadia S Bourguignon
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | | | - Carlos Libertun
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Maske P, Dighe V, Vanage G. n-butylparaben exposure during perinatal period impairs fertility of the F1 generation female rats. CHEMOSPHERE 2018; 213:114-123. [PMID: 30218874 DOI: 10.1016/j.chemosphere.2018.08.130] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Parabens are a class of preservatives widely used in the majority of personal care products, cosmetics, medicines, and food products. However, current literature suggests its plausible role as an endocrine disruptor, hence the present study was undertaken to delineate the effects of n-butyl paraben on perinatally exposed F1 female rats. F0 dams were exposed subcutaneously to n-butylparaben from gestation day 6 (GD 6) to postnatal day (PND) 21 with doses of 10, 100, and 1000 mg/kg Bw/day in corn oil. The F1 female rats were monitored for pubertal development and sexual maturation through PND 30, 45, and 75; which were subsequently subjected to fertility assessment at PND 75. Perinatal exposure to n-butylparaben resulted in- This study documents impaired steroidogenesis and folliculogenesis might be the prime reason for the reduced fertility of F1 female rats. Hence, our study suggests that health monitors need to counsel potential females planning for pregnancy to avoid exposure to parabens.
Collapse
Affiliation(s)
- Priyanka Maske
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra 400 012, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra 400 012, India
| | - Geeta Vanage
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra 400 012, India.
| |
Collapse
|
7
|
|
8
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Wong SSW, Rani M, Dodagatta-Marri E, Ibrahim-Granet O, Kishore U, Bayry J, Latgé JP, Sahu A, Madan T, Aimanianda V. Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores. J Biol Chem 2018; 293:4901-4912. [PMID: 29414772 DOI: 10.1074/jbc.m117.815852] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/10/2018] [Indexed: 11/06/2022] Open
Abstract
Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SP-D has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus, but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus, galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike un-opsonized conidia, SP-D-opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocyte-derived macrophages. Furthermore, SP-D-/- mice challenged intranasally with wildtype conidia or melanin ghosts (i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wildtype mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response.
Collapse
Affiliation(s)
| | - Manjusha Rani
- ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India
| | - Eswari Dodagatta-Marri
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | | | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | | | | | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India.
| | | |
Collapse
|
10
|
Vieira F, Kung JW, Bhatti F. Structure, genetics and function of the pulmonary associated surfactant proteins A and D: The extra-pulmonary role of these C type lectins. Ann Anat 2017; 211:184-201. [PMID: 28351530 DOI: 10.1016/j.aanat.2017.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
The collectins family encompasses several collagenous Ca2+-dependent defense lectins that are described as pathogen recognition molecules. They play an important role in both adaptive and innate immunity. Surfactant proteins A and D are two of these proteins which were initially discovered in association with surfactant in the pulmonary system. The structure, immune and inflammatory functions, and genetic variations have been well described in relation to their roles, function and pathophysiology in the pulmonary system. Subsequently, these proteins have been discovered in a wide range of other organs and organ systems. The role of these proteins outside the pulmonary system is currently an active area of research. This review intends to provide a current overview of the genetics, structure and extra-pulmonary functions of the surfactant collectin proteins.
Collapse
Affiliation(s)
- Frederico Vieira
- Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| | - Johannes W Kung
- Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| | - Faizah Bhatti
- Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
11
|
Rokade S, Kishore U, Madan T. Surfactant protein D regulates murine testicular immune milieu and sperm functions. Am J Reprod Immunol 2017; 77. [PMID: 28054406 DOI: 10.1111/aji.12629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022] Open
Abstract
PROBLEM Surfactant protein D (SP-D), a pattern recognition protein that regulates inflammation and immune homoeostasis, is expressed by testicular germ cells under the influence of testosterone. This study investigates the role of SP-D in testicular immune privilege and sperm functions. METHOD OF STUDY Testicular levels of cytokines and immunoregulatory molecules were evaluated in lipopolysaccharide (LPS)-challenged SP-D gene knockout mice (SP-D-/- ). Further, sperm functions were assessed by computer-assisted sperm analyser (CASA) and in vitro capacitation. The effect of a recombinant fragment of human SP-D (rhSP-D) on LPS-induced testicular inflammation and sperm motility was assessed in wild-type (WT) mice. RESULT Endogenous absence of SP-D led to significantly increased testicular levels of immunosuppressive molecules, viz. serpina3, TGF-β1 and IL-10, and reduced levels of immune cell activation markers, CD86, IL-2 and ITGAX. These compensatory mechanisms resulted in markedly blunted levels of TNF-α, IL-12p40, MIP-1α, G-CSF and IL-6 in response to LPS challenge. Notably, exogenous supplementation of rhSP-D salvaged the WT mice from LPS-induced pro-inflammatory immune response and impairment of sperm motility by upregulating the levels of TGF-β1 and IL-10. CONCLUSION The study highlights the involvement of SP-D in maintenance of testicular immune privilege and its indirect contribution to male fertility.
Collapse
Affiliation(s)
- Sushama Rokade
- Department of Innate Immunity, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Parel, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Parel, Mumbai, India
| |
Collapse
|