1
|
Li J, Lyu B, Song Q. TGF-β Type II Receptor Punt Suppresses Antimicrobial Peptide Expression and Influences Development in Tribolium castaneum. INSECTS 2023; 14:515. [PMID: 37367331 DOI: 10.3390/insects14060515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The transforming growth factor-β (TGF-β) superfamily in insects regulated various physiological events, including immune response, growth and development, and metamorphosis. This complex network of signaling pathways involves conserved cell-surface receptors and signaling co-receptors that allow for precisely coordinated cellular events. However, the roles of TGF-β receptors, particularly the type II receptor Punt, in mediating the innate immunity in insects remains unclear. In this study, we used the red flour beetle, Tribolium castaneum, as a model species to investigate the role of TGF-β type II receptor Punt in mediating antimicrobial peptide (AMP) expression. Developmental and tissue-specific transcript profiles revealed Punt was constitutively expressed throughout development, with the highest transcript level in 1-day female pupae and the lowest transcript level in 18-day larvae. Tissue specific expression profiles showed the highest transcript level of Punt was observed in the Malpighian tubule and ovary in 18-day larvae and 1-day female adults, respectively, suggesting Punt might have distinct functions in larvae and adults. Further results indicated that Punt RNAi in the 18-day larvae led to increased transcript level of AMP genes through transcription factor Relish, leading to inhibition of Escherichia coli proliferation. Knockdown of Punt in larvae also led to splitting of adult elytra and abnormal compound eyes. Furthermore, knockdown of Punt during the female pupal stage resulted in increased transcript levels of AMP genes, as well as abnormal ovary, reduced fecundity, and failure of eggs to hatch. This study deepens our understanding of the biological significance of Punt in insect TGF-β signaling and lays the groundwork for further research of its role in insect immune response, development, and reproduction.
Collapse
Affiliation(s)
- Jingjing Li
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Zhang S, Shen M, Yin H, Huang H, Li T, Zhao W, Guo X, Wu P. Expression profile analysis of circular RNAs in BmN cells (Bombyx mori) upon BmNPV infection. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21735. [PMID: 32881053 DOI: 10.1002/arch.21735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
The disease caused by Bombyx mori nucleopolyhedrovirus (BmNPV) has always been difficult to control, resulting in tremendous economic losses in the sericulture industry. Although much has been learned about the impact of noncoding RNAs on pathogenesis, the role of circular RNA (circRNA) in insect immunity remains unclear. To explore circRNA regulation involved in BmNPV infection, we used transcriptome analysis of BmN cells with or without BmNPV infection to generate circRNA data set. A total of 444 novel circRNAs were identified in BmN cells, with 198 pervasively distributed both in the control group and BmNPV-infection group. The host genes were enriched inMAPK signaling pathway, dorso-ventral axis formation, and ECM-receptor interaction, which were required for the normal larval growth. A total of 75 circRNAs were differentially expressed (DE) on BmNPV infection. Six downregulated circRNAs were validated by Sanger sequencing and qRT-PCR. DEcircRNA-miRNA-DEmRNA network was constructed based on the six validated circRNAs. Pathway analysis indicated that the predicted target genes were mainly enriched in the metabolic pathway and immune-related signaling pathway. Our results may provide a basis for further studies on circRNA function in BmN cells challenged by BmNPV infection and offer an insight into the molecular mechanism on silkworm-virus interaction.
Collapse
Affiliation(s)
- Shaolun Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Manman Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Haotong Yin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Haoling Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xijie Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Xu L, Wu Y, Zhou X, Wang P, Xu H. Characterization and immune function of decapentaplegic (Dpp) gene from the oriental river prawn, Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2020; 106:804-813. [PMID: 32858184 DOI: 10.1016/j.fsi.2020.08.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The Decapentaplegic (Dpp) gene, which belongs to the TGF-β superfamily, is involved in multiple developmental processes in eukaryotic species. In this study, we firstly identified and characterized Dpp from Macrobrachium nipponense. Its full-length open reading frame (ORF) cDNA was 1332 bp, encoding 443 amino acids. The putative MnDpp protein contained a signal peptide, a TGF-β propeptide region and a TGF-β domain. Its TGF-β domain was highly conserved from vertebrates to invertebrates, and exhibited highly similarity to Dpp derived from Bombyx mori. qRT-PCR analysis suggested that MnDpp expressed in all tested tissues and responded to both bacterial and virus pathogens, indicating MnDpp was involved in the innate immune response of M. nipponense. Knockdown of MnDppin vivo significantly increased bacteria growth and markedly decreased the expressions of NF-κB signaling genes including dorsal, relish, TAK1, TAB1, Ikkβ and Ikkε as well as antimicrobial peptides (AMPs) including ALF2, ALF3, ALF4, ALF5, Cru1 and Cru2. Moreover, in vitro overexpression of MnDpp protein in HEK293T cells further demonstrated that it exerted antibacterial immune response by activation of NF-κB signaling cascade. In summary, these results indicated that MnDpp played an important role in the innate immunity in M. nipponense by modulating NF-κB signaling pathway, which might provide new insights about Dpp in crustaceans and paved the way for a better understanding of the crustacean innate immune system.
Collapse
Affiliation(s)
- Liaoyi Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Yue Wu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Xiefei Zhou
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Peichen Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Haisheng Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
4
|
Zhu M, Hu X, Liang Z, Jiang M, Xue R, Gong Y, Zhang X, Cao G, Gong C. Functional characterization of BmOVOs in silkworm, Bombyx mori. BMC Genomics 2019; 20:342. [PMID: 31060506 PMCID: PMC6503385 DOI: 10.1186/s12864-019-5697-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/15/2019] [Indexed: 01/07/2023] Open
Abstract
Background In our previous study, we identified four isoforms of the Bmovo gene, Bmovo-1, Bmovo-2, Bmovo-3 and Bmovo-4 from the silkworm ovary and verified that ovarian development was regulated by the BmOVO proteins. Results: To understand the regulatory mechanisms of ovarian development, the regulation of four BmOVO isoforms on the B. mori ovarian tumor (Bmotu) promoter activity was investigated with luciferase reporter assays. The results showed the Bmotu promoter activity was positively regulated by BmOVO-1, BmOVO-2, BmOVO-3 and BmOVO-4 in a dose-dependent manner, of which BmOVO-2 had the highest transcriptional activation. However, the first (A1) and third acidic domains (A3) at the N-terminus of BmOVO-1 are transcriptional repression domains, while the fourth (A4) and fifth acidic domains (A5) are transcriptional activation domains. A recombinant BmOVO zinc-finger domain was found to bind to the GTACCGTTGTA sequence located at the Bmotu promoter. Furthermore, the Bmotu promoter activity was negatively regulated by ‘Tal-like’ peptide, which can trigger BmOVO-1 degradation at the N-terminus. Conclusions These results will help us to further understand the regulatory mechanisms of BmOVO isoforms on Bmotu promoter activity and ovarian development in the silkworm. Electronic supplementary material The online version of this article (10.1186/s12864-019-5697-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China.,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zi Liang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Mengsheng Jiang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China.,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, Jiangsu, China.,Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yongchang Gong
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Xing Zhang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China. .,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, Jiangsu, China. .,Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China. .,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, Jiangsu, China. .,Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
5
|
Di-Blasi T, Telleria EL, Marques C, Couto RDM, da Silva-Neves M, Jancarova M, Volf P, Tempone AJ, Traub-Csekö YM. Lutzomyia longipalpis TGF-β Has a Role in Leishmania infantum chagasi Survival in the Vector. Front Cell Infect Microbiol 2019; 9:71. [PMID: 30972305 PMCID: PMC6445956 DOI: 10.3389/fcimb.2019.00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
Despite the increasing number of studies concerning insect immunity, Lutzomyia longipalpis immune responses in the presence of Leishmania infantum chagasi infection has not been widely investigated. The few available studies analyzed the role of the Toll and IMD pathways involved in response against Leishmania and microbial infections. Nevertheless, effector molecules responsible for controlling sand fly infections have not been identified. In the present study we investigated the role a signal transduction pathway, the Transforming Growth Factor-beta (TGF-β) pathway, on the interrelation between L. longipalpis and L. i. chagasi. We identified an L. longipalpis homolog belonging to the multifunctional cytokine TGF-β gene family (LlTGF-β), which is closely related to the activin/inhibin subfamily and potentially involved in responses to infections. We investigated this gene expression through the insect development and in adult flies infected with L. i. chagasi. Our results showed that LlTGF-β was expressed in all L. longipalpis developmental stages and was upregulated at the third day post L. i. chagasi infection, when protein levels were also higher as compared to uninfected insects. At this point blood digestion is finished and parasites are in close contact with the insect gut. In addition, we investigated the role of LlTGF-β on L. longipalpis infection by L. i. chagasi using either gene silencing by RNAi or pathway inactivation by addition of the TGF-β receptor inhibitor SB431542. The blockage of the LlTGF-β pathway increased significantly antimicrobial peptides expression and nitric oxide levels in the insect gut, as expected. Both methods led to a decreased L. i. chagasi infection. Our results show that inactivation of the L. longipalpis TGF-β signal transduction pathway reduce L. i. chagasi survival, therefore suggesting that under natural conditions the parasite benefits from the insect LlTGF-β pathway, as already seen in Plamodium infection of mosquitoes.
Collapse
Affiliation(s)
- Tatiana Di-Blasi
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Erich Loza Telleria
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.,Parasitology Department, Faculty of Science, Charles University, Prague, Czechia
| | - Christiane Marques
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rodrigo de Macedo Couto
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Monique da Silva-Neves
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Magdalena Jancarova
- Parasitology Department, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Volf
- Parasitology Department, Faculty of Science, Charles University, Prague, Czechia
| | - Antonio Jorge Tempone
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Patrnogic J, Heryanto C, Eleftherianos I. Transcriptional up-regulation of the TGF-β intracellular signaling transducer Mad of Drosophila larvae in response to parasitic nematode infection. Innate Immun 2018; 24:349-356. [PMID: 30049242 PMCID: PMC6830907 DOI: 10.1177/1753425918790663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The common fruit fly Drosophila melanogaster is an exceptional
model for dissecting innate immunity. However, our knowledge on responses to
parasitic nematode infections still lags behind. Recent studies have
demonstrated that the well-conserved TGF-β signaling pathway participates in
immune processes of the fly, including the anti-nematode response. To elucidate
the molecular basis of TGF-β anti-nematode activity, we performed a transcript
level analysis of different TGF-β signaling components following infection of
D. melanogaster larvae with the nematode parasite
Heterorhabditis gerrardi. We found no significant changes
in the transcript level of most extracellular ligands in both bone morphogenic
protein (BMP) and activin branches of the TGF-β signaling pathway between
nematode-infected larvae and uninfected controls. However, extracellular ligand,
Scw, and Type I receptor, Sax, in the BMP pathway as well as the Type I
receptor, Babo, in the activin pathway were substantially up-regulated following
H. gerrardi infection. Our results suggest that receptor
up-regulation leads to transcriptional up-regulation of the intracellular
component Mad in response to H. gerrardi following changes in
gene expression of intracellular receptors of both TGF-β signaling branches.
These findings identify the involvement of certain TGF-β signaling pathway
components in the immune signal transduction of D. melanogaster
larvae against parasitic nematodes.
Collapse
Affiliation(s)
- Jelena Patrnogic
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, USA
| | - Christa Heryanto
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, USA
| |
Collapse
|
7
|
Zhang M, Qin S, Xu P, Zhang G. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling. PLoS One 2018; 13:e0192745. [PMID: 29462160 PMCID: PMC5819784 DOI: 10.1371/journal.pone.0192745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/30/2018] [Indexed: 01/16/2023] Open
Abstract
Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm.
Collapse
Affiliation(s)
- Meirong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Sheng Qin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Pingzhen Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Guozheng Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
- * E-mail:
| |
Collapse
|
8
|
Effects of transient high temperature treatment on the intestinal flora of the silkworm Bombyx mori. Sci Rep 2017; 7:3349. [PMID: 28611386 PMCID: PMC5469737 DOI: 10.1038/s41598-017-03565-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/26/2017] [Indexed: 02/02/2023] Open
Abstract
The silkworm Bombyx mori is a poikilotherm and is therefore sensitive to various climatic conditions. The influence of temperature on the intestinal flora and the relationship between the intestinal flora and gene expression in the silkworm remain unknown. In the present study, changes of the intestinal flora at 48, 96 and 144 h following transient high temperature treatment (THTT) of 37 °C for 8 h were investigated. According to principal component analysis, the abundances of Enterococcus and Staphylococcus showed a negative correlation with other dominant genera. After THTT, the gene expression levels of spatzle-1 and dicer-2 were increased and decreased, respectively, which suggested that the Toll and RNAi pathways were activated and suppressed, respectively. The species-gene expression matrix confirmed that the spatzle-1 and dicer-2 gene expression levels were negatively and positively correlated, respectively, with the abundance of Enterococcus and Staphylococcus in the control. The abundance of Variovorax post-THTT was positively correlated with the spatzle-1 gene expression level, whereas the community richness of Enterococcus was negatively correlated with the spatzle-1 gene expression level and positively correlated with the dicer-2. The results of the present investigation provide new evidence for understanding the relationships among THTT, intestinal flora and host gene expression.
Collapse
|