1
|
Saffery NSI, Genasan K, Chan CK, Ayob KA, Teo SH, Al-Fayyadh MZM, Othman I, Abidin SAZ, Raman MM, Raghavendran HRB, Kamarul T. Typical response of CD14++CD16– monocyte to knee synovial derived mediators as a key target to overcome the onset and progression of osteoarthritis. Front Med (Lausanne) 2022; 9:904721. [PMID: 36106324 PMCID: PMC9464827 DOI: 10.3389/fmed.2022.904721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/22/2022] [Indexed: 01/15/2023] Open
Abstract
ObjectiveSynovitis with increased infiltration of immune cells is observed in osteoarthritis (OA). Given the inflammatory condition of synovitis, we explored the protein profile of OA synovium (OAS) and its effect on circulating monocytes activation, migration, and functional commitments.MethodsKnee-synovium was acquired from end-stage OA (N = 8) and trauma patients (Trauma baseline control: TBC; N = 8) for characterization using H&E histology, IHC (iNOS), LCMS-QTOF, and MALDI-imaging. Response of peripheral blood monocytes to OAS conditioned-media (OACM) was observed using transwell (n = 6). The migrated cells were captured in SEM, quantified using phase-contrast microphotographs, and their activation receptors (CCR2, CXCR2, CX3CR1, and CD11b), pro-inflammatory genes, and phagocytic potential were studied using flow cytometry, gene expression array/qPCR, and latex beads (LB) phagocytosis assay, respectively.ResultsThe Venn diagram displayed 119 typical proteins in OAS, while 55 proteins in TBCS. The STRING protein network analysis indicated distinctive links between proteins and gene ontology (GO) and revealed proteins associated with leukocyte-mediated immunity in OAS as compared to TBC. The MALDI-imaging showed typical localized proteins at 2234.97, 2522.61, 2627.21, 3329.50, and 3539.69 m/z and IHC confirmed pro-inflammatory iNOS expression in OA synovium. CD14++CD16– classical monocytes significantly migrated in OACM and expressed CCR2, CXCR2, and CD11b receptors, TNFRSF11A, MAPK1, S100A8, HSPB1, ITGAL, NFATC1, IL13RA1, CD93, IL-1β, TNF-α, and MYD88 genes and increased LB uptake as compared to SFM.ConclusionOur findings suggest that the differential protein profile of OA synovium and the classical monocytes migrated, activated, and functionally committed in response to these mediators could be of therapeutic advantage.
Collapse
Affiliation(s)
- Nik Syazana Izyan Saffery
- Department of Orthopedic Surgery, National Orthopedic Centre of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Krishnamurithy Genasan
- Department of Orthopedic Surgery, National Orthopedic Centre of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Krishnamurithy Genasan,
| | - Chee Ken Chan
- Mahkota Medical Centre, Jalan Merdeka, Melaka, Malaysia
| | - Khairul Anwar Ayob
- Department of Orthopedic Surgery, National Orthopedic Centre of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Seow Hui Teo
- Department of Orthopedic Surgery, National Orthopedic Centre of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohamed Zubair Mohamed Al-Fayyadh
- Department of Orthopedic Surgery, National Orthopedic Centre of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Murali Malliga Raman
- Department of Orthopedic Surgery, National Orthopedic Centre of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hanumantha Rao Balaji Raghavendran
- Biomaterials Laboratory, Faculty of Clinical Research, Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Tunku Kamarul
- Department of Orthopedic Surgery, National Orthopedic Centre of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Advanced Medical and Dental Institute, University Sains Malaysia, Penang, Malaysia
- Tunku Kamarul,
| |
Collapse
|
2
|
Fan J, Du J, Zhang Z, Shi W, Hu B, Hu J, Xue Y, Li H, Ji W, Zhuang J, Lv P, Cheng K, Chen K. The Protective Effects of Hydrogen Sulfide New Donor Methyl S-(4-Fluorobenzyl)- N-(3,4,5-Trimethoxybenzoyl)-l-Cysteinate on the Ischemic Stroke. Molecules 2022; 27:1554. [PMID: 35268655 PMCID: PMC8911759 DOI: 10.3390/molecules27051554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/29/2023] Open
Abstract
In this paper, we report the design, synthesis and biological evaluation of a novel S-allyl-l-cysteine (SAC) and gallic acid conjugate S-(4-fluorobenzyl)-N-(3,4,5-trimethoxybenzoyl)-l-cysteinate (MTC). We evaluate the effects on ischemia-reperfusion-induced PC12 cells, primary neurons in neonatal rats, and cerebral ischemic neuronal damage in rats, and the results showed that MTC increased SOD, CAT, GPx activity and decreased LDH release. PI3K and p-AKT protein levels were significantly increased by activating PI3K/AKT pathway. Mitochondrial pro-apoptotic proteins Bax and Bim levels were reduced while anti-apoptotic protein Bcl-2 levels were increased. The levels of cleaved caspase-9 and cleaved caspase-3 were also reduced in the plasma. The endoplasmic reticulum stress (ERS) was decreased, which in turns the survival rate of nerve cells was increased, so that the ischemic injury of neurons was protected accordingly. MTC activated the MEK-ERK signaling pathway and promoted axonal regeneration in primary neurons of the neonatal rat. The pretreatment of MEK-ERK pathway inhibitor PD98059 and PI3K/AKT pathway inhibitor LY294002 partially attenuated the protective effect of MTC. Using a MCAO rat model indicated that MTC could reduce cerebral ischemia-reperfusion injury and decrease the expression of proinflammatory factors. The neuroprotective effect of MTC may be due to inhibition of the over-activation of the TREK-1 channel and reduction of the current density of the TREK1 channel. These results suggested that MTC has a protective effect on neuronal injury induced by ischemia reperfusion, so it may have the potential to become a new type of neuro-ischemic drug candidate.
Collapse
Affiliation(s)
- Jing Fan
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Junxi Du
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Zhongwei Zhang
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Wenjing Shi
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Binyan Hu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Jiaqin Hu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Yan Xue
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Haipeng Li
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Wenjin Ji
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Pengcheng Lv
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| |
Collapse
|
3
|
Role of Nrf2 and Its Activators in Cardiocerebral Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4683943. [PMID: 32831999 PMCID: PMC7428967 DOI: 10.1155/2020/4683943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiocerebral vascular disease (CCVD) is a common disease with high morbidity, disability, and mortality. Oxidative stress (OS) is closely related to the progression of CCVD. Abnormal redox regulation leads to OS and overproduction of reactive oxygen species (ROS), which can cause biomolecular and cellular damage. The Nrf2/antioxidant response element (ARE) signaling pathway is one of the most important defense systems against exogenous and endogenous OS injury, and Nrf2 is regarded as a vital pharmacological target. The complexity of the CCVD pathological process and the current difficulties in conducting clinical trials have hindered the development of therapeutic drugs. Furthermore, little is known about the role of the Nrf2/ARE signaling pathway in CCVD. Clarifying the role of the Nrf2/ARE signaling pathway in CCVD can provide new ideas for drug design. This review details the recent advancements in the regulation of the Nrf2/ARE system and its role and activators in common CCVD development.
Collapse
|
4
|
Cheng Y, Luo D, Zhao Y, Rong J. N-Propargyl caffeate amide (PACA) prevents cardiac fibrosis in experimental myocardial infarction by promoting pro-resolving macrophage polarization. Aging (Albany NY) 2020; 12:5384-5398. [PMID: 32203054 PMCID: PMC7138579 DOI: 10.18632/aging.102959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/24/2020] [Indexed: 12/28/2022]
Abstract
Macrophages control the initiation and resolution of cardiac fibrosis in post-infarction cardiac remodeling. The aim of the present study was to investigate whether N-propargyl caffeate amide (PACA) could suppress myocardial fibrosis via regulating macrophage polarization. By using rat model of isoproterenol-induced myocardial fibrosis, we discovered that PACA could reduce cardiac fibrosis in a dose-dependent manner. To elucidate the anti-fibrotic mechanisms, we examined whether PACA affected pro-inflammatory M1 and pro-resolving macrophage biomarkers in macrophage polarization. As result, PACA reduced the expression of pro-inflammatory M1 biomarkers (e.g., iNOS, TNF-α, CXCL10, IL-6, CCL2 and CD80) while increased the expression of pro-resolving M2a biomarkers (e.g., IL-10, arginase-1, FZZ1, YM-1 and CD163) in LPS-stimulated RAW264.7 macrophages. PACA also suppressed the elevation of M1 biomarker ED1 in the early phase but up-regulated the expression of pro-resolving biomarker ED2 in the later phase. Moreover, PACA reduced the expression of pro-fibrotic TGF-β1 and PDGF-α while maintained or even increased the production of pro-apoptotic MMP-13, MMP-9 and TRAIL. Importantly, mechanistic studies revealed that PACA might promote the switch of macrophage polarization towards a pro-resolving macrophage phenotype via activating PPAR-γ pathway. Taken together, this study suggested that PACA might be a drug candidate for preventing cardiac fibrosis in myocardial infarction.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dan Luo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yingke Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
5
|
Luo D, Guo Y, Cheng Y, Zhao J, Wang Y, Rong J. Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-κB pathways. Aging (Albany NY) 2018; 9:2069-2082. [PMID: 29040966 PMCID: PMC5680556 DOI: 10.18632/aging.101302] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022]
Abstract
Macrophage polarization is implicated in the inflammation in obesity. The aim of the present study was to examine the anti-inflammatory activities of botanical triterpene celastrol against diet-induced obesity. We treated diet-induced obese C57BL/6N male mice with celastrol (5, 7.5 mg/kg/d) for 3 weeks, and investigated macrophage M1/M2 polarization in adipose and hepatic tissues. Celastrol reduced fat accumulation and ameliorated glucose tolerance and insulin sensitivity. Celastrol down-regulated the mRNA levels of macrophage M1 biomarkers (e.g., IL-6, IL-1β, TNF-α, iNOS) in cell culture and in mice. The underlying mechanisms were investigated in murine macrophage RAW264.7 cells. Our results demonstrated that celastrol might control macrophage polarization through modulating the cross-talk between the following three mechanisms: 1) suppressing LPS-induced activation of MAP kinases (e.g., ERK1/2, p38, JNK) in a concentration dependent manner; 2) attenuating LPS-induced nuclear translocation of NF-κB p65 subunit in a time dependent manner; 3) activating Nrf2 and subsequently inducing HO-1 expression. HO-1 inhibitor SnPP diminished the inhibitory effects of celastrol on the activation of NF-κB pathway and the pro-inflammatory M1 macrophage polarization. Taken together, celastrol exhibited anti-obesity effects via suppressing pro-inflammatory M1 macrophage polarization. Thus, our results provide new evidence for the potential of celastrol in the treatment of obesity.
Collapse
Affiliation(s)
- Dan Luo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yumeng Guo
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yuanyuan Cheng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
6
|
Gallic Acid-L-Leucine Conjugate Protects Mice against LPS-Induced Inflammation and Sepsis via Correcting Proinflammatory Lipid Mediator Profiles and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1081287. [PMID: 29765489 PMCID: PMC5889890 DOI: 10.1155/2018/1081287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
Abstract
The pathology of endotoxin LPS-induced sepsis is hallmarked by aberrant production of proinflammatory lipid mediators and nitric oxide (NO). The aim of the present study was to determine whether the new product gallic acid-L-leucine (GAL) conjugate could ameliorate the LPS-induced dysregulation of arachidonic acid metabolism and NO production. We first investigated the effects of GAL conjugate on the expression of proinflammatory enzymes and the production of proinflammatory NO and lipid mediators in mouse macrophage cell line RAW264.7, primary peritoneal macrophages, and mouse model. Western blot analyses revealed that GAL attenuated LPS-induced expression of iNOS, COX-2, and 5-LOX in a concentration-dependent manner. Consistently, probing NO-mediated fluorescence revealed that GAL antagonized the stimulatory effect of LPS on iNOS activity. By profiling of lipid mediators with ESI-MS-based lipidomics, we found that GAL suppressed LPS-induced overproduction of prostaglandin E2, prostaglandin F2, leukotriene B4, and thromboxane B2. We further discovered that GAL might exhibit anti-inflammatory activities by the following mechanisms: (1) suppressing LPS-induced activation of MAP kinases (i.e., ERK1/2, JNK, and p38); (2) reducing the production of reactive oxygen species (ROS); and (3) preventing LPS-induced nuclear translocation of transcription factors NF-κB and AP-1. Consequently, GAL significantly decreased the levels of COX-2 and iNOS expression and the plasma levels of proinflammatory lipid mediators in LPS-treated mice. GAL pretreatment enhanced the survival of mice against LPS-induced endotoxic shock. Taken together, our results suggest that GAL may be a potential anti-inflammatory drug for the treatment of endotoxemia and sepsis.
Collapse
|
7
|
ω-Alkynyl arachidonic acid promotes anti-inflammatory macrophage M2 polarization against acute myocardial infarction via regulating the cross-talk between PKM2, HIF-1α and iNOS. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1595-1605. [DOI: 10.1016/j.bbalip.2017.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/16/2017] [Accepted: 09/24/2017] [Indexed: 12/12/2022]
|
8
|
Chen S, Ren H, Mei Z, Zhuo H, Yang H, Ge Z. Exploring the Biocompatibility of Zwitterionic Copolymers for Controlling Macrophage Phagocytosis of Bacteria. Macromol Biosci 2016; 16:1714-1722. [DOI: 10.1002/mabi.201600306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/22/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Shaojun Chen
- Guangdong Research Center for Interfacial Engineering of Functional Materials; Shenzhen Key Laboratory of Polymer Science and Technology; Nanshan District Key Lab for Biopolymers and Safety Evaluation; College of Materials Science and Engineering; Shenzhen University; Shenzhen 518060 China
| | - Huanhuan Ren
- Guangdong Research Center for Interfacial Engineering of Functional Materials; Shenzhen Key Laboratory of Polymer Science and Technology; Nanshan District Key Lab for Biopolymers and Safety Evaluation; College of Materials Science and Engineering; Shenzhen University; Shenzhen 518060 China
| | - Zhankui Mei
- Guangdong Research Center for Interfacial Engineering of Functional Materials; Shenzhen Key Laboratory of Polymer Science and Technology; Nanshan District Key Lab for Biopolymers and Safety Evaluation; College of Materials Science and Engineering; Shenzhen University; Shenzhen 518060 China
| | - Haitao Zhuo
- College of Chemistry and Environmental Engineering; Shenzhen University; Shenzhen 518060 China
| | - Haipeng Yang
- Guangdong Research Center for Interfacial Engineering of Functional Materials; Shenzhen Key Laboratory of Polymer Science and Technology; Nanshan District Key Lab for Biopolymers and Safety Evaluation; College of Materials Science and Engineering; Shenzhen University; Shenzhen 518060 China
| | - Zaochuan Ge
- Guangdong Research Center for Interfacial Engineering of Functional Materials; Shenzhen Key Laboratory of Polymer Science and Technology; Nanshan District Key Lab for Biopolymers and Safety Evaluation; College of Materials Science and Engineering; Shenzhen University; Shenzhen 518060 China
| |
Collapse
|