1
|
Srisapoome P, Jun-On P, Uchuwittayakul A, Limyada CU. Therapeutic effects of fumaric acid on proteomic expression and gut microbiota composition in Pacific white shrimp (Penaeus vannamei) infected with Ecytonucleospora hepatopenaei (EHP). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110122. [PMID: 39818325 DOI: 10.1016/j.fsi.2025.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/16/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Recently, microsporidiosis caused by a microsporidian [Ecytonucleospora (Enterocytozoon) hepatopenaei, EHP] has been found to seriously impact the global shrimp industry. The aim of this study was to evaluate the therapeutic effects of fumaric acid (FA) in EHP-infected Pacific white shrimp (Penaeus vannamei). In the first 2 groups, non-EHP-infected shrimp were fed FA-supplemented (10 g/kg diet) or normal feed (CM+ and CM-, respectively). The other 2 groups of EHP-infected shrimp were also fed FA-supplemented or normal feed (EM+ and EM-, respectively). All the experimental groups were fed for 7 days, and the hepatopancreas and intestine of the shrimp were sampled at 0, 1, 3 and 7 days after application (DAAs). The copy number of EHP in the hepatopancreas of the EM + shrimp was significantly lower than that in the hepatopancreas of the EM-shrimp at 3 and 7 DAAs (P < 0.01). Histopathological investigation revealed that the hepatopancreas of EM + shrimp began healing from microsporidiosis at 3 DAA and had almost completely recovered at 7 DAA. Proteomic analysis also revealed that the levels of immune-related proteins, such as β-1,3-glucan-binding proteins, the tumor suppressor TP53, and protein disulfide isomerase A3, were elevated in the hepatopancreas of the CM + shrimp compared with those in the control shrimp. Microbiome analyses from both LC‒MS/MS data and next-generation sequencing (NGS) of the shrimp intestine revealed that FA supplementation strongly affected the bacterial community in the shrimp gut. Based on the results from this study in the hepatopancreas of shrimp fed a diet of 10 g/kg FA for 7 days, FA strongly affected EHP proliferation; simultaneously, it increased the levels of several key molecules involved in oxidative stress, cellular stress and pattern recognition without harmful negative side effects; and effectively influenced the gut microbiota. This research is the first to show the effectiveness of FA in promoting shrimp health in the context of microsporidiosis in Pacific white shrimp and could be further applied in the global shrimp aquaculture industry.
Collapse
Affiliation(s)
- Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Piyarat Jun-On
- Animal Supplement and Pharmaceutical Co., Ltd, 3300/121 Elephant Tower B, 24th floor, Chatuchak, Bangkok, 10900, Thailand
| | - Anurak Uchuwittayakul
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand
| | - Cher-Un Limyada
- Vet Products Research & Innovation Center Co., Ltd, 141 Moo9, Thailand Science Park, Innovation Clusters (INC2) Tower D 11th floor, Room No. INCD1108-INCD1111 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
2
|
Alaman OAP, Pedrosa-Gerasmio IR, Koiwai K, Nozaki R, Kondo H, Hirono I. Molecular characterization of a short-chained pentraxin gene from kuruma shrimp Marsupenaeus japonicus hemocytes. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109548. [PMID: 38588870 DOI: 10.1016/j.fsi.2024.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Pentraxins (PTXs) are a family of pattern recognition proteins (PRPs) that play a role in pathogen recognition during infection via pathogen-associated molecular patterns (PAMPs). Here, we characterized a short-chained pentraxin isolated from kuruma shrimp (Marsupenaeus japonicus) hemocytes (MjPTX). MjPTX contains the pentraxin signature HxCxS/TWxS (where x can be any amino acid), although the second conserved residue of this signature differed slightly (L instead of C). In the phylogenetic analysis, MjPTX clustered closely with predicted sequences from crustaceans (shrimp, lobster, and crayfish) displaying high sequence identities exceeding 52.67 %. In contrast, MjPTX showed minimal sequence identity when compared to functionally similar proteins in other animals, with sequence identities ranging from 20.42 % (mouse) to 28.14 % (horseshoe crab). MjPTX mRNA transcript levels increased significantly after artificial infection with Vibrio parahaemolyticus (48 h), White Spot Syndrome Virus (72 h) and Yellow Head Virus (24 and 48 h). Assays done in vitro revealed that recombinant MjPTX (rMjPTX) has an ability to agglutinate Gram-negative and Gram-positive bacteria and to bind microbial polysaccharides and bacterial suspensions in the presence of Ca2+. Taken together, our results suggest that MjPTX functions as a classical pattern recognition protein in the presence of calcium ions, that is capable of binding to specific moieties present on the surface of microorganisms and facilitating their clearance.
Collapse
Affiliation(s)
- Omar Adrianne P Alaman
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan; Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Iloilo, Philippines.
| | - Ivane R Pedrosa-Gerasmio
- Department of Marine Science, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Keichiro Koiwai
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Reiko Nozaki
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
3
|
Preethi PS, Hariharan NM, Kumar SD, Rameshpathy M, Subbaiya R, Karmegam N. Actinobacterial peroxidase-mediated biodeterioration of hazardous explosive, 2, 4, 6, trinitrophenol by in silico and in vitro approaches. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:102. [PMID: 38433158 DOI: 10.1007/s10653-024-01903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Explosives are perilous and noxious to aquatic biota disrupting their endocrinal systems. Supplementarily, they exhibit carcinogenic, teratogenic and mutagenic effects on humans and animals. Henceforth, the current study has been targeted to biotransform the explosive, 2, 4, 6 trinitrophenol (TNP) by wetland peroxidase from Streptomyces coelicolor. A total peroxidase yield of 20,779 mg/l with 51.6 folds of purification was observed. In silico molecular docking cum in vitro appraisals were accomplished to assess binding energy and interacting binding site residues of peroxidase and TNP complex. TNP required a minimal binding energy of-6.91 kJ/mol and was subjected to biodeterioration (89.73%) by peroxidase in purified form, with 45 kDa and a similarity score of 34 by MASCOT protein analysis. Moreover, the peroxidase activity was confirmed with Zymogram analysis. Characterization of peroxidase revealed that optimum values of pH and temperature as 6 and 40 °C, respectively, with their corresponding stability varying from 3.5 to 7. Interestingly, the kinetic parameters such as Km and Vmax on 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 were 19.27 µm and 0.41 µm/min; 21.4 µm and 0.1 µm/min, respectively. Among the diverse substrates, chemicals and trace elements, ABTS (40 mM), citric acid (5 mM) and Fe2+ (5 mM) displayed the highest peroxidase activity. Computational docking and in vitro results were corroborative and UV-Vis spectroscopy, HPLC, FTIR and GC-MS indicated the presence of simple metabolites of TNP such as nitrophenols and benzoquinone, showcasing the efficacy of S. coelicolor peroxidase to biotransform TNP. Henceforth, the current study offers a promising channel for biological treatment of explosive munitions, establishing a sustainable green earth.
Collapse
Affiliation(s)
- Prasath Sai Preethi
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai, Tamil Nadu, 600123, India
| | - N M Hariharan
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai, Tamil Nadu, 600123, India
| | - Shanmugam Dilip Kumar
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600 119, India
| | - Manian Rameshpathy
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, 636 007, India.
| |
Collapse
|
4
|
Wang T, Li X, Zhang C, Xu J. Transcriptome analysis of Ganoderma lingzhi (Agaricomycetes) response to Trichoderma hengshanicum infection. Front Microbiol 2023; 14:1131599. [PMID: 36910175 PMCID: PMC9996313 DOI: 10.3389/fmicb.2023.1131599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Green mold caused by Trichoderma spp. has become one of the most serious diseases which threatening the production of Ganoderma lingzhi. To understand the possible resistance mechanism of the G. lingzhi response to T. hengshanicum infection, we examined the G. lingzhi transcript accumulation at 0, 12, and 24 h after T. hengshanicum inoculation. The gene expression analysis was conducted on the interaction between G. lingzhi and T. hengshanicum using RNA-seq and digital gene expression (DGE) profiling methods. Transcriptome sequencing indicated that there were 162 differentially expressed genes (DEGs) at three infection time points, containing 15 up-regulated DEGs and 147 down-regulated DEGs. Resistance-related genes thaumatin-like proteins (TLPs) (PR-5s), phenylalanine ammonia-lyase, and Beta-1,3-glucan binding protein were significantly up-regulated. At the three time points of infection, the heat shock proteins (HSPs) genes of G. lingzhi were down-regulated. The down-regulation of HSPs genes led to the inhibition of HSP function, which may compromise the HSP-mediated defense signaling transduction pathway, leading to G. lingzhi susceptibility. Pathway enrichment analyses showed that the main enriched pathways by G. lingzhi after infection were sphingolipid metabolism, ether lipid metabolism, and valine, leucine and isoleucine degradation pathway. Overall, the results described here improve fundamental knowledge of molecular responses to G. lingzhi defense and contribute to the design of strategies against Trichoderma spp.
Collapse
Affiliation(s)
- Tiantian Wang
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Xiaobin Li
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chunlan Zhang
- College of Landscape Architecture, Changchun University, Changchun, China
| | - Jize Xu
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Ma W, Li Y, Yang Y, Han Q, Zhang W. Cloning and functional analysis of a pacifastin-like protein from the sea cucumber, Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:736-745. [PMID: 36309323 DOI: 10.1016/j.fsi.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Pacifastin family proteins play a crucial role in regulating innate immune responses such as phagocytosis in invertebrates. However, the function of the Ajpacifastin-like counterpart in the sea cucumber Apostichopus japonicus remains elusive. In this study, the pacifastin gene of A. japonicus was cloned, characterized and named Ajpacifastin-like. The open reading frame of Ajpacifastin-like is 1497 bp in length and encodes a polypeptide containing 498 amino acid residues. Structural analysis revealed that the protein encoded by Ajpacifastin-like contains two pacifastin light chain domains (amino acids 287-322 and amino acids 376-407). Real-time reverse transcriptase PCR showed that Ajpacifastin-like mRNA is ubiquitously expressed in all tissues examined, with the highest expression in muscle. Ajpacifastin-like mRNA expression was significantly upregulated to 3.27-fold after challenge with Vibrio splendidus for 24 h. To explore the function of the Ajpacifastin-like protein in the immune response of A. japonicus, dsRNA interference with Ajpacifastin-like expression and with the expression of its postulated target gene was performed. Flow cytometry analysis showed that the rate of phagocytosis by coelomocytes increased to 1.21-fold in individuals treated with specific Ajpacifastin-like siRNA. However, rate of phagocytosis by coelomocytes decreased to 86% in individuals treated with Ajphenoloxidase siRNA. These results show that the Ajpacifastin-like gene is ubiquitously expressed in almost all tissues and that Ajpacifastin-like protein acts as an immunomodulatory factor via phenoloxidase to mediate phagocytosis by coelomocytes in pathogen-challenged A. japonicus.
Collapse
Affiliation(s)
- Wenyang Ma
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, PR China
| | - Ya Li
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, PR China
| | - Yiran Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, PR China
| | - Qingxi Han
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, PR China.
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, PR China.
| |
Collapse
|
6
|
Bombyx mori β-1,3-Glucan Recognition Protein 4 ( BmβGRP4) Could Inhibit the Proliferation of B. mori Nucleopolyhedrovirus through Promoting Apoptosis. INSECTS 2021; 12:insects12080743. [PMID: 34442307 PMCID: PMC8396850 DOI: 10.3390/insects12080743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023]
Abstract
β-1,3-glucan recognition proteins (βGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori β-1,3-glucan recognition protein gene named BmβGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmβGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmβGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmβGRP4 in 5th instar larvae, while the overexpression of BmβGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmβGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmβGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmβGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmβGRP4 to escape host antiviral defense. Taken together, these results show that BmβGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.
Collapse
|
7
|
Iswarya A, Anjugam M, Shanthini S, Vaseeharan B. Protective activity of beta-1, 3-glucan binding protein against AAPH induced oxidative stress in Saccharomyces cerevisiae. Int J Biol Macromol 2019; 138:890-902. [DOI: 10.1016/j.ijbiomac.2019.07.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 01/14/2023]
|
8
|
Iswarya A, Vaseeharan B, Anjugam M, Gobi N, Divya M, Faggio C. β-1, 3 glucan binding protein based selenium nanowire enhances the immune status of Cyprinus carpio and protection against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2018; 83:61-75. [PMID: 30176334 DOI: 10.1016/j.fsi.2018.08.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
In the present study, immunoenhancing effect of β-1, 3 glucan binding protein based selenium nanowire (Phβ-GBP-SeNWs) in common carp, Cyprinus carpio was assessed. Biological based selenium nanoform was synthesized, using crustacean immune molecule β-GBP purified from the haemolymph of Paratelphusa hydrodromus. The morphological property of Phβ-GBP-SeNWs was analyzed through TEM which reveals, the synthesized nanowire exhibits approximately 30-50 nm width with smooth surface. For this current study, fish were fed with experimental diet includes Phβ-GBP, sodium selenite, selenomethionine and Phβ-GBP-SeNWs supplemented diet at different concentrations (0.5 mg, 1 mg and 2 mg) for 30 days. The growth performance, cellular and humoral immune responses (myeloperoxidase, reactive oxygen species, alkaline phosphatase and lysozyme activity) and antioxidant enzymes (glutathione peroxidase and catalase activity) in the fish fed with Phβ-GBP-SeNWs supplemented diet were significantly increased in dose-dependent manner, which was observed at two different interval period (15th and 30th day). Also, Phβ-GBP-SeNWs supplemented diet fed fish gain resistant after challenged with aquatic pathogen Aeromonas hydrophila and the relative survival percentage was increased. Agar disc diffusion and BacLight assay clearly demonstrated the antibacterial property of plasma of fish fed with Phβ-GBP-SeNWs supplemented diet against aquatic pathogen A. hydrophila, Vibrio parahaemolyticus and Vibrio alginolyticus. Moreover, confocal laser scanning microscopic analysis clearly showed that, Phβ-GBP-SeNWs supplemented diet fed fish plasma was more efficient in disrupting the architecture of bacterial colonies and thereby reduced the thickness of biofilm. Thus, the present study indicates that, incorporation of Phβ-GBP-SeNWs in the diet enhances the fish immune responses and disease resistance against aquatic pathogens.
Collapse
Affiliation(s)
- Arokiadhas Iswarya
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 6(th) Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 6(th) Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India.
| | - Mahalingam Anjugam
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 6(th) Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India
| | - Narayanan Gobi
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 6(th) Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India
| | - Mani Divya
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 6(th) Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina-Viale Ferdinando Stagno d'Alcontres, 31 -98166 S.Agata-Messina, Italy
| |
Collapse
|
9
|
Jiménez-Cortés JG, García-Contreras R, Bucio-Torres MI, Cabrera-Bravo M, Córdoba-Aguilar A, Benelli G, Salazar-Schettino PM. Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Trop 2018; 186:69-101. [PMID: 30003907 DOI: 10.1016/j.actatropica.2018.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Due to their high impact on public health, human blood-feeding arthropods are one of the most relevant animal groups. Bacterial symbionts have been long known to play a role in the metabolism, and reproduction of these arthropod vectors. Nowadays, we have a more complete picture of their functions, acknowledging the wide influence of bacterial symbionts on processes ranging from the immune response of the arthropod host to the possible establishment of pathogens and parasites. One or two primary symbiont species have been found to co-evolve along with their host in each taxon (being ticks an exception), leading to various kinds of symbiosis, mostly mutualistic in nature. Moreover, several secondary symbiont species are shared by all arthropod groups. With respect to gut microbiota, several bacterial symbionts genera are hosted in common, indicating that these bacterial groups are prone to invade several hematophagous arthropod species feeding on humans. The main mechanisms underlying bacterium-arthropod symbiosis are discussed, highlighting that even primary symbionts elicit an immune response from the host. Bacterial groups in the gut microbiota play a key role in immune homeostasis, and in some cases symbiont bacteria could be competing directly or indirectly with pathogens and parasites. Finally, the effects climate change, great human migrations, and the increasingly frequent interactions of wild and domestic animal species are analyzed, along with their implications on microbiota alteration and their possible impacts on public health and the control of pathogens and parasites harbored in arthropod vectors of human parasites and pathogens.
Collapse
Affiliation(s)
- J Guillermo Jiménez-Cortés
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Martha I Bucio-Torres
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Margarita Cabrera-Bravo
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Alex Córdoba-Aguilar
- Laboratorio de Ecología de la Conducta de Artrópodos, Instituto de Ecología, Universidad Nacional Autónoma de México, México
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Paz M Salazar-Schettino
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
10
|
Rekha R, Vaseeharan B, Ishwarya R, Anjugam M, S. Alharbi N, Kadaikunnan S, Khaled JM, Al-anbr MN, Govindarajan M. Searching for crab-borne antimicrobial peptides: Crustin from Portunus pelagicus triggers biofilm inhibition and immune responses of Artemia salina against GFP tagged Vibrio parahaemolyticus Dahv2. Mol Immunol 2018; 101:396-408. [DOI: 10.1016/j.molimm.2018.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 11/24/2022]
|
11
|
Jayanthi S, Vaseeharan B, Ishwarya R, Karthikeyan S, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Vágvölgyi C. Identification, characterization and immune response of prophenoloxidase from the blue swimmer crab Portunus pelagicus and its antibiofilm activity. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2018.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Divya M, Vaseeharan B, Anjugam M, Iswarya A, Karthikeyan S, Velusamy P, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Vágvölgyi C. Phenoloxidase activation, antimicrobial, and antibiofilm properties of β-glucan binding protein from Scylla serrata crab hemolymph. Int J Biol Macromol 2018; 114:864-873. [DOI: 10.1016/j.ijbiomac.2018.03.159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
|