1
|
Shbeer AM, Ahmed Robadi I. The role of Interleukin-21 in autoimmune Diseases: Mechanisms, therapeutic Implications, and future directions. Cytokine 2024; 173:156437. [PMID: 37972478 DOI: 10.1016/j.cyto.2023.156437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
IL-21 is a multifunctional cytokine that regulates the functional activity of various immune cells. Initial studies have shown that IL-21 can influence the differentiation, proliferation and function of T and B cells, as well as promote the maturation and increase the cytotoxicity of CD8 + T cells and NK cells. During humoral immune responses, IL-21 has significant effects on B cell activation, differentiation and apoptosis. In addition, IL-21 promotes the differentiation of both naive and memory B cells, ultimately leading to the activation of plasma cells. The function of IL-21 in the immune system is complex, as it has the ability to either stimulate or inhibit immune responses. in addition, IL-21 facilitates the differentiation of naive and memory B cells into plasma cells. The functionality of IL-21 in the immune system is diverse, as it has the ability to stimulate or inhibit immune responses. This cytokine has been implicated in several diseases including cancer, allergies and autoimmune diseases. Research has suggested that this cytokine is involved in the development of autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Several studies have suggested that inhibition of IL-21 has a therapeutic effect on autoimmune diseases. Therefore, targeting both the cytokine's receptor and IL-21 in autoimmune diseases may be an effective approach to reduce the severity of the disease or to treat it. This review will examine the biological effects of IL-21 on various immune cells and the role of the cytokine in autoimmune diseases.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Ibrahim Ahmed Robadi
- Department of pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Xiang Y, Liu L, Hou Y, Du S, Xu S, Zhou H, Shao L, Li G, Yu T, Liu Q, Xue M, Yang J, Peng J, Hou M, Shi Y. The mTORC1 pathway participate in hyper-function of B cells in immune thrombocytopenia. Ann Hematol 2023; 102:2317-2327. [PMID: 37421506 DOI: 10.1007/s00277-023-05348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
B cell hyper-function plays an important role in the pathogenesis of immune thrombocytopenia (ITP), but the molecular mechanisms underlying such changes remain unclear. We sought to identify regulators of B cell dysfunction in ITP patients through transcriptome sequencing and the use of inhibitors. B cells were isolated from PBMC of 25 ITP patients for B cell function test and transcriptome sequencing. For the potential regulatory factors identified by transcriptome sequencing, the corresponding protein inhibitors were used to explore the regulatory effect of the regulatory factors on B cell dysfunction in vitro. In this study, increased antibody production, enhanced terminal differentiation and highly expressed costimulatory molecules CD80 and CD86 were found in B cells of patients with ITP. In addition, RNA sequencing revealed highly activated mTOR pathway in these pathogenic B cells, indicating that the mTOR pathway may be involved in B cell hyper-function. Furthermore, mTOR inhibitors rapamycin or Torin1 effectively blocked the activation of mTORC1 in B cells, resulting in reduce antibody secretion, impaired differentiation of B cells into plasmablasts and downregulation of costimulatory molecules. Interestingly, as an unspecific inhibitor of mTORC2 besides mTORC1, Torin1 did not show a stronger capacity to modulate B cell function than rapamycin, suggesting that the regulation of B cells by Torin1 may depend on blockade of mTORC1 rather than mTORC2 pathway. These results indicated that the activation of mTORC1 pathway is involved in B cell dysfunction in patients with ITP, and inhibition of mTORC1 pathway might be a potential therapeutic approach for ITP.
Collapse
Affiliation(s)
- Yujiao Xiang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Lu Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Shenghong Du
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Hai Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Tianshu Yu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Qiang Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Meijuan Xue
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Junhui Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center in Hematological Diseases, Jinan, China
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Bier J, Deenick EK. The role of dysregulated PI3Kdelta signaling in human autoimmunity*. Immunol Rev 2022; 307:134-144. [DOI: 10.1111/imr.13067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Julia Bier
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- St Vincent’s Clinical School Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research Darlinghurst New South Wales Australia
- Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
4
|
Wang M, Chen H, Qiu J, Yang HX, Zhang CY, Fei YY, Zhao LD, Zhou JX, Wang L, Wu QJ, Zhou YZ, Zhang W, Zhang FC, Zhang X, Lipsky PE. Antagonizing miR-7 suppresses B cell hyperresponsiveness and inhibits lupus development. J Autoimmun 2020; 109:102440. [PMID: 32201226 DOI: 10.1016/j.jaut.2020.102440] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The objective of this study was to address the biological function of miR-7 in an animal model of systemic lupus erythematosus. METHODS MRLlpr/lpr lupus mice were administrated antagomiR-7 or a scramble control by tail vein for 5weeks. Three groups of animals' tissues were assessed for lupus manifestations by immunofluorescence and immunohistochemistry, and serum was examined for levels of autoantibodies and inflammatory cytokines. Splenic B cell subsets were assessed for intracellular expression of PI3K signaling by FACS. Finally, the ability of the miR-7 antagomir to regulate the expansion of T follicular helper (Tfh) cells and B cell hyperresponsiveness was further explored. RESULTS We found that miR-7 was up-regulated in MRLlpr/lpr lupus mice and directly targeted PTEN mRNA in B cells. Up-regulated miR-7 in MRLlpr/lpr lupus B cells was negatively correlated with PTEN expression. Notably, miR-7 antagomir treatment reduced lupus manifestations in MRLlpr/lpr lupus mice. miR-7-mediated down-regulation of PTEN/AKT signaling promoted B cell differentiation into plasmablasts/plasma cells and spontaneous germinal center (GC) formation, whereas miR-7 antagomir normalized splenic B cell subtypes. Besides suppressing the activation of B cells, miR-7 antagomir intervention also down-regulated STAT3 phosphorylation and production of IL-21 and reduced Tfh expansion. CONCLUSION The above data have demonstrated the critical roles of miR-7 not only in regulating PTEN expression and also B cell and Tfh cell function in lupus-prone MRLlpr/lpr lupus mice. Furthermore, the disease manifestations in MRLlpr/lpr lupus mice are efficiently improved by miR-7 antagomir, indicating miR-7 as a potential treatment strategy in SLE.
Collapse
Affiliation(s)
- Min Wang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China; Clinical Immunology Centre, Medical Epigenetics Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hua Chen
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Jia Qiu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Henan University of Science and Technology, Henan, 471003, China
| | - Hua-Xia Yang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Chun-Yan Zhang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Yun-Yun Fei
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Li-Dan Zhao
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Jia-Xin Zhou
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Li Wang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Qing-Jun Wu
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Yang-Zhong Zhou
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Wen Zhang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Feng-Chun Zhang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Xuan Zhang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China; Clinical Immunology Centre, Medical Epigenetics Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Peter E Lipsky
- RILITE Research Institute and AMPEL BioSolutions, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Taylor H, Laurence ADJ, Uhlig HH. The Role of PTEN in Innate and Adaptive Immunity. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036996. [PMID: 31501268 DOI: 10.1101/cshperspect.a036996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid and protein phosphatase and tensin homolog (PTEN) controls the differentiation and activation of multiple immune cells. PTEN acts downstream from T- and B-cell receptors, costimulatory molecules, cytokine receptors, integrins, and also growth factor receptors. Loss of PTEN activity in human and mice is associated with cellular and humoral immune dysfunction, lymphoid hyperplasia, and autoimmunity. Although most patients with PTEN hamartoma tumor syndrome (PHTS) have no immunological symptoms, a subclinical immune dysfunction is present in many, and clinical immunodeficiency in few. Comparison of the immune phenotype caused by PTEN haploinsufficiency in PHTS, phosphoinositide 3-kinase (PI3K) gain-of-function in activated PI3K syndrome, and mice with conditional biallelic Pten deletion suggests a threshold model in which coordinated activity of several phosphatases control the PI3K signaling in a cell-type-specific manner. Emerging evidence highlights the role of PTEN in polygenic autoimmune disorders, infection, and the immunological response to cancer. Targeting the PI3K axis is an emerging therapeutic avenue.
Collapse
Affiliation(s)
- Henry Taylor
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arian D J Laurence
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Haematology, University College London Hospitals NHS Trust, London WC1E 6AG, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
6
|
Long D, Chen Y, Wu H, Zhao M, Lu Q. Clinical significance and immunobiology of IL-21 in autoimmunity. J Autoimmun 2019; 99:1-14. [PMID: 30773373 DOI: 10.1016/j.jaut.2019.01.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022]
Abstract
Interleukin-21 (IL-21), an autocrine cytokine predominantly produced by follicular helper T (Tfh) and T helper 17 (Th17) cells, has been proven to play an important role in the immune system, for example, by promoting proliferation and the development of Tfh and Th17 cells, balancing helper T cell subsets, inducing B cell generation and differentiation into plasma cells, and enhancing the production of immunoglobulin. These effects are mainly mediated by activation of the JAK/STAT, MAPK and PI3K pathways. Some IL-21 target genes, such as B lymphocyte induced maturation protein-1 (Blimp-1), suppressor of cytokine signaling (SOCS), CXCR5 and Bcl-6, play important roles in the immune response. Therefore, IL-21 has been linked to autoimmune diseases. Indeed, IL-21 levels are increased in the peripheral blood and tissues of patients with systematic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes (T1D), immune thrombocytopenia (ITP), primary Sjogren's syndrome (pSS), autoimmune thyroid disease (AITD) and psoriasis. This increased IL-21 even positively associates with Tfh cells, plasma cells, autoantibodies and disease activity in SLE and RA. Additionally, IL-21 has been utilized as a therapeutic target in SLE, RA, T1D and psoriatic mouse models. Profoundly, clinical trials have shown safety and improvement in RA patients. However, tolerance and long-term pharmacodynamics effects with low bioavailability have been found in SLE patients. Therefore, this review aims to summarize the latest progress on IL-21 function and its signaling pathway and discuss the role of IL-21 in the pathogenesis of and therapy for autoimmune diseases, with the hope of providing potential therapeutic and diagnostic strategies for clinical use.
Collapse
Affiliation(s)
- Di Long
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China
| | - Yongjian Chen
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China.
| |
Collapse
|