1
|
Fan L, Sui XY, Jin X, Zhang WJ, Zhou P, Shao ZM. High expression of TLR3 in triple-negative breast cancer predicts better prognosis-data from the Fudan University Shanghai Cancer Center cohort and tissue microarrays. BMC Cancer 2023; 23:298. [PMID: 37005579 PMCID: PMC10067281 DOI: 10.1186/s12885-023-10721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/08/2023] [Indexed: 04/04/2023] Open
Abstract
INTRODUCTION We have previously reported that Toll-like receptor 3 (TLR3) acts as a suppressor gene for breast cancer initiation and progression. In this study, we evaluated the role of TLR3 in breast cancer using our original Fudan University Shanghai Cancer Center (FUSCC) datasets and breast cancer tissue microarrays. METHODS Using FUSCC multiomics datasets on triple- negative breast cancer (TNBC), we compared the mRNA expression of TLR3 in TNBC tissue and the adjacent normal tissue. A Kaplan-Meier plotter was performed to investigate the expression of TLR3 on prognosis in the FUSCC TNBC cohort. We performed immunohistochemical staining to analyze TLR3 protein expression in the TNBC tissue microarrays. Furthermore, bioinformatics analysis was performed using the Cancer Genome Atlas (TCGA) data to verify the results of our FUSCC study. The relationship between TLR3 and clinicopathological features was analyzed with logistic regression and the Wilcoxon signed-rank test. The association between clinical characteristics and overall survival in TCGA patients was assessed using the Kaplan-Meier method and Cox regression analysis. Gene set enrichment analysis (GSEA) was performed to identify signaling pathways that are differentially activated in breast cancer. RESULTS The mRNA expression of TLR3 was lower in TNBC tissue than in the adjacent normal tissue in the FUSCC datasets. The TLR3 had high expression in immunomodulatory (IM) and mesenchymal-like (MES) subtypes and low expression in luminal androgen receptor (LAR) and basal-like immune-suppressed (BLIS) subtypes. High expression of TLR3 in TNBC predicted better prognosis in the FUSCC TNBC cohort. Immunohistochemical staining of the tissue microarrays showed that TLR3 had lower expression in breast cancer tissues than in the adject normal tissues. Furthermore, the TLR3 expression was positively associated with B cell, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and myeloid dendritic cells. Bioinformatic analysis using high-throughput RNA-sequencing data from the TCGA demonstrated that the reduced expression of TLR3 in breast cancer was associated with advanced clinicopathological characteristics, survival time, and poor prognosis. CONCLUSIONS TLR3 has low expression in TNBC tissue. High expression of TLR3 in triple-negative breast cancer predicts better prognosis. TLR3 expression may be a potential prognostic molecular marker of poor survival in breast cancer.
Collapse
Affiliation(s)
- Lei Fan
- Department of Breast Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin-Yi Sui
- Department of Breast Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xi Jin
- Department of Breast Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wen-Juan Zhang
- Department of Breast Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng Zhou
- Department of Breast Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Parkway Health, Shanghai, China.
- Runshangshan Medical Center, Shanghai, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Ureaplasma-Driven Neonatal Neuroinflammation: Novel Insights from an Ovine Model. Cell Mol Neurobiol 2023; 43:785-795. [PMID: 35334011 PMCID: PMC9957905 DOI: 10.1007/s10571-022-01213-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
Ureaplasma species (spp.) are considered commensals of the adult genitourinary tract, but have been associated with chorioamnionitis, preterm birth, and invasive infections in neonates, including meningitis. Data on mechanisms involved in Ureaplasma-driven neuroinflammation are scarce. The present study addressed brain inflammatory responses in preterm lambs exposed to Ureaplasma parvum (UP) in utero. 7 days after intra-amniotic injection of UP (n = 10) or saline (n = 11), lambs were surgically delivered at gestational day 128-129. Expression of inflammatory markers was assessed in different brain regions using qRT-PCR and in cerebrospinal fluid (CSF) by multiplex immunoassay. CSF was analyzed for UP presence using ureB-based real-time PCR, and MRI scans documented cerebral white matter area and cortical folding. Cerebral tissue levels of atypical chemokine receptor (ACKR) 3, caspases 1-like, 2, 7, and C-X-C chemokine receptor (CXCR) 4 mRNA, as well as CSF interleukin-8 protein concentrations were significantly increased in UP-exposed lambs. UP presence in CSF was confirmed in one animal. Cortical folding and white matter area did not differ among groups. The present study confirms a role of caspases and the transmembrane receptors ACKR3 and CXCR4 in Ureaplasma-driven neuroinflammation. Enhanced caspase 1-like, 2, and 7 expression may reflect cell death. Increased ACKR3 and CXCR4 expression has been associated with inflammatory central nervous system (CNS) diseases and impaired blood-brain barrier function. According to these data and previous in vitro findings from our group, we speculate that Ureaplasma-induced caspase and receptor responses affect CNS barrier properties and thus facilitate neuroinflammation.
Collapse
|
3
|
Peptidyl Fluoromethyl Ketones and Their Applications in Medicinal Chemistry. Molecules 2020; 25:molecules25174031. [PMID: 32899354 PMCID: PMC7504820 DOI: 10.3390/molecules25174031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Peptidyl fluoromethyl ketones occupy a pivotal role in the current scenario of synthetic chemistry, thanks to their numerous applications as inhibitors of hydrolytic enzymes. The insertion of one or more fluorine atoms adjacent to a C-terminal ketone moiety greatly modifies the physicochemical properties of the overall substrate, especially by increasing the reactivity of this functionalized carbonyl group toward nucleophiles. The main application of these peptidyl α-fluorinated ketones in medicinal chemistry relies in their ability to strongly and selectively inhibit serine and cysteine proteases. These compounds can be used as probes to study the proteolytic activity of the aforementioned proteases and to elucidate their role in the insurgence and progress on several diseases. Likewise, if the fluorinated methyl ketone moiety is suitably connected to a peptidic backbone, it may confer to the resulting structure an excellent substrate peculiarity and the possibility of being recognized by a specific subclass of human or pathogenic proteases. Therefore, peptidyl fluoromethyl ketones are also currently highly exploited for the target-based design of compounds for the treatment of topical diseases such as various types of cancer and viral infections.
Collapse
|
4
|
Gu L, Ni J, Sheng S, Zhao K, Sun C, Wang J. Microarray analysis of long non-coding RNA expression profiles in Marfan syndrome. Exp Ther Med 2020; 20:3615-3624. [PMID: 32855713 PMCID: PMC7444390 DOI: 10.3892/etm.2020.9093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/29/2020] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve a crucial role in every aspect of cell biological functions as well as in a variety of diseases, including cardiovascular disease, cancer and nervous system disease. However, the differential expression profiles of lncRNAs in Marfan syndrome (MFS) have not been reported. The aim of the present study was to identify potential target genes behind the pathogenesis of MFS by analyzing microarray profiles of lncRNA in aortic tissues from individuals with MFS and normal aortas (NA). The differentially expressed lncRNA profiles between MFS (n=3) and NA (n=4) tissues were analyzed using microarrays. Bioinformatics analyses were used to further investigate the candidate lncRNAs. Reverse transcription-quantitative (RT-qPCR) was applied to validate the results. In total, the present study identified 294 lncRNAs (245 upregulated and 49 downregulated) and 644 mRNAs (455 upregulated and 189 downregulated) which were differential expressed between MFS and NA tissues (fold change ≥1.5; P<0.05). Gene Ontology enrichment analysis indicated that the differentially expressed mRNAs were involved in cell adhesion, elastic fiber assembly, extracellular matrix (ECM) organization, the response to virus and the inflammatory response. Kyoto Encyclopedia of Gene and Genomes pathway analysis indicated that the differentially expressed mRNAs were mainly associated with focal adhesion, the ECM-receptor interaction, the mitogen-activated protein kinase signaling pathway and the tumor necrosis factor signaling pathway. The lncRNA-mRNA coexpression network analysis further elucidated the interaction between the lncRNAs and mRNAs. A total of five lncRNAs (uc003jka.1, uc003jox.1, X-inactive specific transcript, linc-lysophosphatidic acid receptor 1 and linc-peptidylprolyl isomerase domain and WD repeat containing 1) with the highest degree of coexpression were selected and confirmed using RT-qPCR. In the present study, expression profiles of lncRNA and mRNA in MFS were revealed using microarray analysis. These results provided novel candidates for further investigation of the molecular mechanisms and effective targeted therapies for MFS.
Collapse
Affiliation(s)
- Lizhong Gu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jiangwei Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Sunpeng Sheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kaixiang Zhao
- Department of Cardiothoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Chengchao Sun
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jue Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
5
|
Silwedel C, Speer CP, Härtel C, Glaser K. Ureaplasma-Driven Neuroinflammation in Neonates: Assembling the Puzzle Pieces. Neonatology 2020; 117:665-672. [PMID: 33271546 PMCID: PMC7949233 DOI: 10.1159/000512019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Ureaplasma species (spp.) are commonly regarded as low-virulence colonizers of the genitourinary tract. Intrauterine Ureaplasma infection, however, has been associated with chorioamnionitis and preterm birth. The overall impact of a neonatal Ureaplasma colonization is yet to be understood. High pathogen prevalence and frequent neurological morbidities particularly in immature preterm infants call for an assessment of the significance of Ureaplasma spp. in neonatal neuroinflammation. This narrative review summarizes clinical data, animal studies, and in vitro results to elucidate potential Ureaplasma-associated neurological morbidities as well as underlying mechanisms. Increasing evidence indicates an involvement of Ureaplasma spp. in invasive central nervous system infections, suggesting a meticulous ability of Ureaplasma spp. to interfere with immune defense mechanisms. Ultimately, Ureaplasma spp. should be considered as relevant pathogens in neonatal neuroinflammation.
Collapse
Affiliation(s)
- Christine Silwedel
- University Children's Hospital, University of Wuerzburg, Wuerzburg, Germany,
| | - Christian P Speer
- University Children's Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Christoph Härtel
- University Children's Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Kirsten Glaser
- University Children's Hospital, University of Wuerzburg, Wuerzburg, Germany.,Department of Women and Child Health, Center for Pediatric Research Leipzig, Division of Neonatology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Salivary glands require Aurora Kinase B for regeneration after transient innate immune-mediated injury. Sci Rep 2019; 9:11339. [PMID: 31383943 PMCID: PMC6683207 DOI: 10.1038/s41598-019-47762-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 07/24/2019] [Indexed: 11/18/2022] Open
Abstract
Severe, irreversible salivary gland disease and oral dryness is experienced by sufferers of Sjögren’s syndrome and those treated with irradiation for head and neck cancer. Therefore, major efforts have been made in the last decade to unravel key molecular signals that can drive salivary gland (SG) regeneration and functional restoration. However, the earliest molecular determinants that accompany SG regeneration remain incompletely defined. The present study examined the initial mitogenic events marking the regenerative response of the murine submandibular gland (SMG), following innate immune-mediated injury. Local intraductal administration of the synthetic double stranded (ds) RNA polyinosinic-polycytidylic acid (poly (I:C)) widely, but transiently, depleted the acinar and progenitor cells, 24 hours post poly (I:C) introduction. While the progenitor and duct cells started to proliferate and expand at 72 hours, the Mist1-positve acinar cells did not re-appear until 96 hours post poly (I:C) injury. The cellular replenishment during regeneration involved significant upregulation of the cell cycle promoter Aurora kinase B (AURKB). AURKB, which is expressed in healthy proliferating and cancerous cells, is a serine/threonine protein kinase, well known to orchestrate key events in cell division and cytokinesis. However, the expression and role of AURKB in regeneration of post mitotic salivary gland cells has not been previously explored. In vivo inhibition of AURKB using the selective inhibitor Barasertib (AZD1152-HQPA) interfered with SMG recovery from the transient, but severe poly (I:C)-mediated injury and cellular depletion. AURKB deficiency during regeneration of the injured tissues: disrupted cell cycle progression, repressed renewal of Mist1-positive acinar cells and prevented recovery of salivary secretion. The knowledge gained in this study may be utilized in the development of therapeutic targets for irreversible salivary gland disease.
Collapse
|
7
|
Silwedel C, Fehrholz M, Speer CP, Ruf KC, Manig S, Glaser K. Differential modulation of pulmonary caspases: Is this the key to Ureaplasma-driven chronic inflammation? PLoS One 2019; 14:e0216569. [PMID: 31067276 PMCID: PMC6506144 DOI: 10.1371/journal.pone.0216569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022] Open
Abstract
Although accepted agents in chorioamnionitis and preterm birth, the role of Ureaplasma species (spp.) in inflammation-driven morbidities of prematurity, including the development of bronchopulmonary dysplasia, remains controversial. To add to scarce in vitro data addressing the pro-inflammatory capacity of Ureaplasma spp., pulmonary epithelial-like A549 cells and human pulmonary microvascular endothelial cells (HPMEC) were incubated with Ureaplasma (U.) urealyticum, U. parvum, and Escherichia coli lipopolysaccharide (LPS). Ureaplasma isolates down-regulated caspase mRNA levels in A549 cells (caspase 8: p<0.001, 9: p<0.001, vs. broth), while increasing caspase protein expression, enzyme activity, and cell death in HPMEC (active caspase 3: p<0.05, caspase 8: p<0.05, active caspase 9: p<0.05, viability: p<0.05). LPS, contrarily, induced caspase mRNA expression in HPMEC (caspase 3: p<0.01, 4: p<0.001, 5: p<0.001, 8: p<0.001, vs. control), but not in A549 cells, and did not affect enzyme activity or protein levels in either cell line. LPS, but neither Ureaplasma isolate, enhanced mRNA expression of pro-inflammatory interleukin (IL)-6 in both A549 (p<0.05, vs. control) and HPMEC (p<0.001) as well as tumor necrosis factor-α (p<0.01), IL-1β (p<0.001), and IL-8 (p<0.05) in HPMEC. We are therefore the first to demonstrate a differential modulation of pulmonary caspases by Ureaplasma spp. in vitro. Ureaplasma-driven enhanced protein expression and activity of caspases in pulmonary endothelial cells result in cell death and may cause structural damage. Down-regulated caspase mRNA in pulmonary epithelial cells, contrarily, may indicate Ureaplasma-induced inhibition of apoptosis and prevent effective immune responses. Both may ultimately contribute to chronic Ureaplasma colonization and long-term pulmonary inflammation.
Collapse
Affiliation(s)
- Christine Silwedel
- University Children´s Hospital, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| | - Markus Fehrholz
- University Children´s Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Christian P. Speer
- University Children´s Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Katharina C. Ruf
- University Children´s Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Steffi Manig
- Institute of Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Kirsten Glaser
- University Children´s Hospital, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
8
|
Silwedel C, Haarmann A, Fehrholz M, Claus H, Speer CP, Glaser K. More than just inflammation: Ureaplasma species induce apoptosis in human brain microvascular endothelial cells. J Neuroinflammation 2019; 16:38. [PMID: 30764830 PMCID: PMC6374915 DOI: 10.1186/s12974-019-1413-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background Ureaplasma species (spp.) are commonly regarded as low-virulent commensals but may cause invasive diseases in immunocompromised adults and in neonates, including neonatal meningitis. The interactions of Ureaplasma spp. with host defense mechanisms are poorly understood. This study addressed Ureaplasma-driven cell death, concentrating on apoptosis as well as inflammatory cell death. Methods Human brain microvascular endothelial cells (HBMEC) were exposed to Ureaplasma (U.) urealyticum serovar 8 (Uu8) and U. parvum serovar 3 (Up3). Resulting numbers of dead cells as well as mRNA levels and enzyme activity of key agents in programmed cell death were assessed by flow cytometry, RNA sequencing, and qRT-PCR, respectively. xCELLigence data were used for real-time monitoring of changes in cell adhesion properties. Results Both Ureaplasma isolates induced cell death (p < 0.05, vs. broth). Furthermore, Ureaplasma spp. enhanced mRNA levels for genes in apoptosis, including caspase 3 (Up3 p < 0.05, vs. broth), caspase 7 (p < 0.01), and caspase 9 (Up3 p < 0.01). Caspase 3 activity was increased upon Uu8 exposure (p < 0.01). Vice versa, Ureaplasma isolates downregulated mRNA levels for proteins involved in inflammatory cell death, namely caspase 1 (Uu8 p < 0.01, Up3 p < 0.001), caspase 4 (Uu8 p < 0.05, Up3 p < 0.01), NOD-like receptor pyrin domain-containing 3 (Uu8 p < 0.05), and receptor-interacting protein kinase 3 (p < 0.05). Conclusions By inducing apoptosis in HBMEC as main constituents of the blood-brain barrier, Ureaplasma spp. may provoke barrier breakdown. Simultaneous suppression of inflammatory cell death may additionally attenuate host defense strategies. Ultimate consequence could be invasive and long-term CNS infections by Ureaplasma spp. Electronic supplementary material The online version of this article (10.1186/s12974-019-1413-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Silwedel
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany.
| | - Axel Haarmann
- Department of Neurology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080, Wuerzburg, Germany
| | - Markus Fehrholz
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Christian P Speer
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Kirsten Glaser
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| |
Collapse
|
9
|
Mo Y, Fan Y, Fu W, Xu W, Chen S, Wen Y, Liu S, Peng L, Xiao Y. Acute immune stress improves cell resistance to chemical poison damage in SP600125-induced polyploidy of fish cells in vitro. FISH & SHELLFISH IMMUNOLOGY 2019; 84:656-663. [PMID: 30393156 DOI: 10.1016/j.fsi.2018.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
Previous research has indicated that the small compound, SP600125, could induce polyploidy of fish cells, and has established a stable tetraploid cell line from diploid fish cells. In order to explore how fish cells maintain homeostasis under SP600125-stress in vitro, this study investigates impacts of SP600125-stress on intracellular pathways, as well as on regulation of the cellular homeostasis feedback in fish cells. Transcriptomes are obtained from the SP600125-treated cells. Compared with unigenes expressed in control group (crucial carp fin cells), a total of 2670 and 1846 unigenes are significantly upregulated and downregulated in these cells, respectively. Differentially expressed genes are found, which are involved in innate defense, inflammatory pathways and cell adhesion molecules-related pathways. The SP600125-stress enhances cell-mediated immunity, characterized by significantly increasing expression of multiple immune genes. These enhanced immune genes include the pro-inflammatory cytokines (IL-1β, TNF-ɑ, IL-6R), the adaptor signal transducers (STAT, IκBɑ), and the integrins (ɑ2β1, ɑMβ2). Furthermore, mitochondria are contributed to the cellular homeostasis regulation upon the SP600125-stress. The results show that acute inflammation is an adaptive and controlled response to the SP600125-stress, which is beneficial for alleviating toxicity by SP600125. They provide a potential way of breeding fish polyploidy induced by SP600125 in the future research.
Collapse
Affiliation(s)
- Yanxiu Mo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Basic Medical Science, Xiangnan University, Chenzhou, Hunan, 423000, PR China
| | - Yunpeng Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Shujuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Yuanhui Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China.
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, PR China; School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China.
| |
Collapse
|
10
|
Shaalan A, Carpenter G, Proctor G. Inducible nitric oxide synthase-mediated injury in a mouse model of acute salivary gland dysfunction. Nitric Oxide 2018; 78:95-102. [PMID: 29885902 DOI: 10.1016/j.niox.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 01/27/2023]
Abstract
AIM Inducible nitric oxide synthase (iNOS) is a key regulator of the innate immune system. The aim of the current study was to explore whether innate immune-mediated iNOS and reactive nitrogen species acutely perturb acinar cell physiology and calcium homeostasis of exocrine salivary tissues. METHODS Innate immunity in the submandibular gland of C57BL/6 mice was locally activated via intraductal retrograde infusion of polyinosinic:polycytidylic acid (poly (I:C). Expressions of iNOS and the activity of the reactive nitrogen species peroxynitrite, were evaluated by immunohistochemistry. Mice were pre-treated with the selective iNOS inhibitor aminoguanidine in order to substantiate the injurious effect of the nitrosative signal on the key calcium regulator sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2b) and calcium signalling. RESULTS Challenging salivary gland innate immunity with poly (I:C) prompted upregulated expression of iNOS and the generation of peroxynitrite. Inhibition of iNOS/peroxynitrite revealed the role played by upregulated nitrosative signalling in: dysregulated expression of SERCA2b, perturbed calcium homeostasis and loss of saliva secretion. CONCLUSION iNOS mediates disruption of exocrine calcium signalling causing secretory dysfunction following activation of innate immunity in a novel salivary gland injury model.
Collapse
Affiliation(s)
- Abeer Shaalan
- Mucosal and Salivary Biology, Dental Institute, King's College London, United Kingdom.
| | - Guy Carpenter
- Mucosal and Salivary Biology, Dental Institute, King's College London, United Kingdom
| | - Gordon Proctor
- Mucosal and Salivary Biology, Dental Institute, King's College London, United Kingdom
| |
Collapse
|