1
|
Díaz-Yayguaje M, Caballero-Gaitan S, Valderrama-Aguirre A. Unlocking epitope similarity: A comparative analysis of the American manatee (Trichechus manatus) IgA and human IgA through an immuno-informatics approach. PLoS One 2024; 19:e0308396. [PMID: 39283838 PMCID: PMC11404806 DOI: 10.1371/journal.pone.0308396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 09/22/2024] Open
Abstract
The American manatee (Trichechus manatus), experiencing population declines due to various threats, is the focus of conservation efforts that include the capture, rehabilitation, and release of orphaned calves when their mothers are unable to care for them. These efforts are compromised by the use of commercially available milk substitutes that lack essential components found in natural manatee breast milk, particularly immunoglobulin A (IgA). IgA plays a crucial role in nurturing the immune mucosal system and fostering a healthy microbiota. However, research on IgA in non-maternally fed manatees is limited due to the lack of species-specific reagents. To address this gap, our study employs immuno-informatics analysis to compare IgA sequences from manatees with those from other species, aiming to explore epitope similarity and sharing. We compared the protein sequence of manatee IgA with available IgA sequences, assessing similarity at the sequence, 3D structures, and epitope levels. Our findings reveal that human IgA exhibits the highest similarity in terms of sequence and 3D structure. Additionally, epitope analysis shows high conservation, identity, and similarity of predicted epitopes compared to human IgA. Future studies should focus on functional analysis using human IgA polyclonal reagents to detect manatee IgA in breast milk. Our findings highlight the potential of comparative analysis in advancing the understanding of immunology in non-human animals and overcoming challenges associated with the scarcity of species-specific reagents.
Collapse
Affiliation(s)
- Mariapaula Díaz-Yayguaje
- Departamento de Ciencias Biológicas, Grupo Instituto de Investigaciones Biomédicas, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Susana Caballero-Gaitan
- Departamento de Ciencias Biológicas, Laboratorio de Ecología Molecular de Vertebrados Acuáticos, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Augusto Valderrama-Aguirre
- Departamento de Ciencias Biológicas, Grupo Instituto de Investigaciones Biomédicas, Universidad de Los Andes, Bogotá D.C., Colombia
| |
Collapse
|
2
|
Yin D, Chen C, Lin D, Hua Z, Ying C, Zhang J, Zhao C, Liu Y, Cao Z, Zhang H, Wang C, Liang L, Xu P, Jian J, Liu K. Telomere-to-telomere gap-free genome assembly of the endangered Yangtze finless porpoise and East Asian finless porpoise. Gigascience 2024; 13:giae067. [PMID: 39283687 PMCID: PMC11403816 DOI: 10.1093/gigascience/giae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis, YFP) and the East Asian finless porpoise (Neophocaena asiaeorientalis sunameri, EFP) are 2 subspecies of the narrow-ridged finless porpoise that live in freshwater and saltwater, respectively. The main objective of this study was to provide contiguous chromosome-level genome assemblies for YFP and EFP. RESULTS Here, we generated and upgraded the genomes of YFP and EFP at the telomere-to-telomere level through the integration of PacBio HiFi long reads, ultra-long ONT reads, and Hi-C sequencing data with a total size of 2.48 Gb and 2.50 Gb, respectively. The scaffold N50 of 2 genomes was 125.12 Mb (YFP) and 128 Mb (EFP) with 1 contig for 1 chromosome. The telomere repeat and centromere position were clearly identified in both YFP and EFP genomes. In total, 5,480 newfound genes were detected in the YFP genome, including 56 genes located in the newly identified centromere regions. Additionally, synteny blocks, structural similarities, phylogenetic relationships, gene family expansion, and inference of selection were studied in connection with the genomes of other related mammals. CONCLUSIONS Our research findings provide evidence for the gradual adaptation of EFP in a marine environment and the potential sensitivity of YFP to genetic damage. Compared to the 34 cetacean genomes sourced from public databases, the 2 new assemblies demonstrate superior continuity with the longest contig N50 and scaffold N50 values, as well as the lowest number of contigs. The improvement of telomere-to-telomere gap-free reference genome resources supports conservation genetics and population management for finless porpoises.
Collapse
Affiliation(s)
- Denghua Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | | | - Danqing Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhong Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Congping Ying
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jialu Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | | | - Yan Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhichen Cao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Han Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | | | | | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jianbo Jian
- BGI Genomics, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Kai Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
New insight of human-IgH 3'regulatory regions in immunoglobulins switch. Gene 2023; 862:147254. [PMID: 36764340 DOI: 10.1016/j.gene.2023.147254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Several studies in animal models have demonstrated the role of the 3' Regulatory Region (3'RR) in the B cell maturation in mammals. In healthy humans, the concentration of each class of circulating immunoglobulins (Igs) has stable but different levels, due to several control mechanisms that also involve a duplicated version of the 3'RR on the chromosome 14 (chr14). The classes' equilibrium can be altered during infections and in other pathological conditions. MATERIAL AND METHODS We studied the concentrations of IgA, IgM, IgG classes and IgG subclasses in a cohort of 1235 people having immunoglobulin concentrations within normal range to determine the presence of any correlation between the Igs serum concentrations, age and ratio among Ig classes and IgG subclasses in healthy humans. Furthermore, we assessed the concentrations of IgE and the allelic frequency of 3'RR1 hs1.2 enhancer in a group of 115 subjects with high levels of circulating IgE due to acute exacerbation of allergic asthma and in a control group of 118 healthy subjects. RESULTS In both children and adult subjects, the concentrations of the four IgG subclasses decreased from IgG1 to IgG4. Furthermore, the 3'RR1 enhancer hs1.2 alleles contribute to the control of the IgG subclasses levels, but it does not affect the IgE levels. CONCLUSION The 3'RR1 controls IgG and IgE through different mechanisms, only in the IgG case involving the hs1.2 alleles. Thus, considering the IgH constant genes loci on the chromosome 14 and the multiple steps of switch that rearrange the whole region, we found that in humans the classes of Igs are modulated by mechanisms involving a complex interaction and transition between 3'RR1 and 3'RR2, also in physiological conditions.
Collapse
|
4
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
5
|
Zhang Z, Mu Y, Shan L, Sun D, Guo W, Yu Z, Tian R, Xu S, Yang G. Divergent Evolution of TRC Genes in Mammalian Niche Adaptation. Front Immunol 2019; 10:871. [PMID: 31068942 PMCID: PMC6491686 DOI: 10.3389/fimmu.2019.00871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/04/2019] [Indexed: 12/01/2022] Open
Abstract
Mammals inhabit a wide variety of ecological niches, which in turn can be affected by various ecological factors, especially in relation to immunity. The canonical TRC repertoire (TRAC, TRBC, TRGC, and TRDC) codes C regions of T cell receptor chains that form the primary antigen receptors involved in the activation of cellular immunity. At present, little is known about the correlation between the evolution of mammalian TRC genes and ecological factors. In this study, four types canonical of TRC genes were identified from 37 mammalian species. Phylogenetic comparative methods (phyANOVA and PGLS) and selective pressure analyses among different groups of ecological factors (habitat, diet, and sociality) were carried out. The results showed that habitat was the major ecological factor shaping mammalian TRC repertoires. Specifically, trade-off between TRGC numbers and positive selection of TRAC and the balanced evolutionary rates between TRAC and TRDC genes were speculated as two main mechanisms in adaption to habitat and sociality. Overall, our study suggested divergent mechanisms for the evolution of TRCs, prompting mammalian immunity adaptions within diverse niches.
Collapse
Affiliation(s)
- Zepeng Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuan Mu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lei Shan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Di Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Weijian Guo
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhenpeng Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
6
|
de Sá ALA, Breaux B, Burlamaqui TCT, Deiss TC, Sena L, Criscitiello MF, Schneider MPC. The Marine Mammal Class II Major Histocompatibility Complex Organization. Front Immunol 2019; 10:696. [PMID: 31019512 PMCID: PMC6459222 DOI: 10.3389/fimmu.2019.00696] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
Sirenians share with cetaceans and pinnipeds several convergent traits selected for the aquatic lifestyle. Living in water poses new challenges not only for locomotion and feeding but also for combating new pathogens, which may render the immune system one of the best tools aquatic mammals have for dealing with aquatic microbial threats. So far, only cetaceans have had their class II Major Histocompatibility Complex (MHC) organization characterized, despite the importance of MHC genes for adaptive immune responses. This study aims to characterize the organization of the marine mammal class II MHC using publicly available genomes. We located class II sequences in the genomes of one sirenian, four pinnipeds and eight cetaceans using NCBI-BLAST and reannotated the sequences using local BLAST search with exon and intron libraries. Scaffolds containing class II sequences were compared using dotplot analysis and introns were used for phylogenetic analysis. The manatee class II region shares overall synteny with other mammals, however most DR loci were translocated from the canonical location, past the extended class II region. Detailed analysis of the genomes of closely related taxa revealed that this presumed translocation is shared with all other living afrotherians. Other presumptive chromosome rearrangements in Afrotheria are the deletion of DQ loci in Afrosoricida and deletion of DP in E. telfairi. Pinnipeds share the main features of dog MHC: lack of a functional pair of DPA/DPB genes and inverted DRB locus between DQ and DO subregions. All cetaceans share the Cetartiodactyla inversion separating class II genes into two subregions: class IIa, with DR and DQ genes, and class IIb, with non-classic genes and a DRB pseudogene. These results point to three distinct and unheralded class II MHC structures in marine mammals: one canonical organization but lacking DP genes in pinnipeds; one bearing an inversion separating IIa and IIb subregions lacking DP genes found in cetaceans; and one with a translocation separating the most diverse class II gene from the MHC found in afrotherians and presumptive functional DR, DQ, and DP genes. Future functional research will reveal how these aquatic mammals cope with pathogen pressures with these divergent MHC organizations.
Collapse
Affiliation(s)
- André Luiz Alves de Sá
- Laboratory of Applied Genetics, Socio-Environmental and Water Resources Institute, Federal Rural University of the Amazon, Belém, Brazil.,Laboratory of Genomics and Biotechnology, Biological Sciences Institute, Federal University of Pará, Belém, Brazil
| | - Breanna Breaux
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | | | - Thaddeus Charles Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Leonardo Sena
- Center of Biodiversity Advanced Studies, Biological Sciences Institute, Federal University of Pará, Belém, Brazil
| | - Michael Frederick Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Maria Paula Cruz Schneider
- Laboratory of Genomics and Biotechnology, Biological Sciences Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|