1
|
Floro E Silva M, Roque GAS, de Oliveira Coser L, Jorge GP, de Oliveira ALR, Rocha FJS, Giorgio S. Macrophage Polarisation During Leishmania (Viannia) braziliensis Infection in Mice. Parasite Immunol 2025; 47:e70001. [PMID: 39801486 DOI: 10.1111/pim.70001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 05/02/2025]
Abstract
Leishmania (Viannia) braziliensis causes cutaneous and mucocutaneous leishmaniasis. Macrophages are host cells for parasite replication and act as effector cells against the parasite. The two main macrophage phenotypes (M1 and M2) and their polarisation states have been implicated in Leishmania infection despite scarce data on L. (V.) braziliensis. In this study, we investigated the temporal and spatial distribution and predominance of M1 and M2 macrophages during L. (V.) braziliensis infection in Balb/c mice. Animals were infected with L. (V.) braziliensis promastigotes and were monitored for 25 weeks. Histopathological evaluation of footpad lesions, regional lymph nodes, and spleen; cellularity; and macrophage population quantification of M1, and M2 macrophages by flow cytometry were performed in different tissues. The results showed that after infection with either strain of L. (V.) braziliensis the lesions were small and non-ulcerated. The dissemination of parasites to tissues reinforced the characteristic visualisation of dermotropicL. (V.) braziliensis. The proportion of M2 macrophages in different tissues was significantly higher than that of M1 macrophages. Overall, the results reported here confirm that Leishmania an intracellular parasite, promotes and influences macrophage phenotype polarisation in different tissues over time, and researchers testing therapies based on macrophage phenotype regulation should consider this evidence.
Collapse
Affiliation(s)
- Marina Floro E Silva
- Departamento de Biologia Animal, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | | | - Lilian de Oliveira Coser
- Departamento de Biologia estrutural e funcional, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Genesy Pérez Jorge
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Selma Giorgio
- Departamento de Biologia Animal, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
2
|
Floro e Silva M, Roque GAS, Machado DDA, Rocha FJS, Giorgio S. Leishmania (Viannia) braziliensis replicates in mouse bone marrow. Acta Trop 2022; 230:106407. [PMID: 35304124 DOI: 10.1016/j.actatropica.2022.106407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 11/01/2022]
Abstract
Leishmaniasis is a neglected disease caused by species of the protozoan Leishmania. Leishmania (Viannia) braziliensis causes the cutaneous and mucocutaneous forms of the disease. Experimental cutaneous infection of mice is one of the most important preclinical research models of leishmaniasis. Here, we investigated the course of infection in mice inoculated with two reference strains of L. (V.) braziliensis (MHOM/BR/00/BA788 strain [BA] and MHOM/BR/94/H-3227 strain [CE]). Although both parasite strains induced detectable footpad lesions, BA-infected mice developed small non-ulcerated lesions that self-healed, whereas CE-infected mice developed small non-ulcerated lesions that did not regress. The parasites were detected in the footpad lesions, lymph nodes draining the site of inoculation, spleen, and bone marrow of mice infected with BA or CE parasites at 6 and 25 weeks post-inoculation. These data indicate that L (V.) braziliensis-infected mice harbor parasites that spread, even when these animals do not display overt lesions. In addition, this is the first report of the presence of the parasite in the bone marrow of mice inoculated with L. (V.) braziliensis.
Collapse
|
4
|
Dos Santos AGA, da Silva MGL, Carneiro EL, de Lima LL, Fernandes ACBS, Silveira TGV, Sant'Ana DDMG, Nogueira-Melo GDA. A New Target Organ of Leishmania (Viannia) braziliensis Chronic Infection: The Intestine. Front Cell Infect Microbiol 2021; 11:687499. [PMID: 34336715 PMCID: PMC8317265 DOI: 10.3389/fcimb.2021.687499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023] Open
Abstract
Leishmania (Viannia) braziliensis is one of the main causes of cutaneous leishmaniasis in the Americas. This species presents genetic polymorphism that can cause destructive lesions in oral, nasal, and oropharyngeal tracts. In a previous study, the parasite caused several histopathological changes to hamster ileums. Our study evaluates immune response components, morphological changes, and effects on neurons in the ileums of hamsters infected by three different strains of L. (V.) braziliensis in two infection periods. For the experiment, we separated hamsters into four groups: a control group and three infected groups. Infected hamsters were euthanized 90- or 120-days post infection. We used three strains of L. (V.) braziliensis: the reference MHOM/BR/1975/M2903 and two strains isolated from patients who had different responses to Glucantime® treatment (MHOM/BR/2003/2314 and MHOM/BR/2000/1655). After laparotomy, ileums were collected for histological processing, biochemical analysis, and evaluation of neurons in the myenteric and submucosal plexuses of the enteric nervous system (ENS). The results demonstrated the increase of blood leukocytes after the infection. Optical microscopy analysis showed histopathological changes with inflammatory infiltrates, edemas, ganglionitis, and Leishmania amastigotes in the ileums of infected hamsters. We observed changes in the organ histoarchitecture of infected hamsters when compared to control groups, such as thicker muscular and submucosa layers, deeper and wider crypts, and taller and broader villi. The number of intraepithelial lymphocytes and TGF-β-immunoreactive cells increased in all infected groups when compared to the control groups. Mast cells increased with longer infection periods. The infection also caused remodeling of intestinal collagen and morphometry of myenteric and submucosal plexus neurons; but this effect was dependent on infection duration. Our results show that L. (V.) braziliensis infection caused time-dependent alterations in hamster ileums. This was demonstrated by the reduction of inflammatory cells and the increase of tissue regeneration factors at 120 days of infection. The infected groups demonstrated different profiles in organ histoarchitecture, migration of immune cells, and morphometry of ENS neurons. These findings suggest that the small intestine (or at least the ileum) is a target organ for L. (V.) braziliensis infection, as the infection caused changes that were dependent on duration and strain.
Collapse
Affiliation(s)
| | | | - Erick Lincoln Carneiro
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá, Brazil
| | - Lainy Leiny de Lima
- Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | - Debora de Mello Gonçales Sant'Ana
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Brazil.,Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - Gessilda de Alcantara Nogueira-Melo
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Brazil.,Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
5
|
Paiva MB, Ribeiro-Romão RP, Resende-Vieira L, Braga-Gomes T, Oliveira MP, Saavedra AF, Silva-Couto L, Albuquerque HG, Moreira OC, Pinto EF, Da-Cruz AM, Gomes-Silva A. A Cytokine Network Balance Influences the Fate of Leishmania (Viannia) braziliensis Infection in a Cutaneous Leishmaniasis Hamster Model. Front Immunol 2021; 12:656919. [PMID: 34276650 PMCID: PMC8281932 DOI: 10.3389/fimmu.2021.656919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022] Open
Abstract
The golden hamster is a suitable model for studying cutaneous leishmaniasis (CL) due to Leishmania (Viannia) braziliensis. Immunopathological mechanisms are well established in the L. (L.) major-mouse model, in which IL-4 instructs a Th2 response towards progressive infection. In the present study, we evaluated the natural history of L. braziliensis infection from its first stages up to lesion establishment, with the aim of identifying immunological parameters associated with the disease outcome and parasitism fate. To this end, hamsters infected with 104, 105, or 106 promastigotes were monitored during the first hours (4h, 24h), early (15 days, 30 days) and late (50 days) post-infection (pi) phases. Cytokines, iNOS and arginase gene expression were quantified in the established lesions by reverse transcription-quantitative PCR. Compared to the 105 or 106 groups, 104 animals presented lower lesions sizes, less tissue damage, and lower IgG levels. Basal gene expression in normal skin was high for TGF-β, and intermediary for TNF, IL-6, and IL-4. At 4hpi, no cytokine induction was observed in the 104 group, while an upregulation of IL-6, IL-10, and IL-4 was observed in the 106 group. At 15dpi, lesion appearance was accompanied by an increased expression of all assessed cytokines, markedly in the 105 and 106 groups. Upregulation of all investigated cytokines was observed in the late phase, although less expressive in the 104 group. IFN-γ was the depending variable influencing tissue damage, while IL-6 was associated to parasite load. The network correlating gene expression and clinical and laboratorial parameters indicated inoculum-independent associations at 15 and 30dpi. A strong positive network correlation was observed in the 104 group, but not in the 105 or 106 groups. In conclusion, IL-4, IL-6, IL-10, and TGF-β are linked o L. braziliensis progression. However, a balanced cytokine network is the key for an immune response able to reduce the ongoing infection and reduce pathological damage.
Collapse
Affiliation(s)
- Milla B Paiva
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Larissa Resende-Vieira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Thais Braga-Gomes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcia P Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Andrea F Saavedra
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Luzinei Silva-Couto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Hermano G Albuquerque
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Otacilio C Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Eduardo Fonseca Pinto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Rede de Pesquisas em Saúde do Estado do Rio de Janeiro/FAPERJ, Rio de Janeiro, Brazil
| | - Alda Maria Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Rede de Pesquisas em Saúde do Estado do Rio de Janeiro/FAPERJ, Rio de Janeiro, Brazil.,Disciplina de Parasitologia-DMIP, Faculdade de Ciências Médicas, UERJ, Rio de Janeiro, Brazil.,The National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Adriano Gomes-Silva
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Laboratório de Pesquisa Clínica em Micobacterioses, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Virtual Screening and the In Vitro Assessment of the Antileishmanial Activity of Lignans. Molecules 2020; 25:molecules25102281. [PMID: 32408657 PMCID: PMC7288103 DOI: 10.3390/molecules25102281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/25/2023] Open
Abstract
Leishmaniasis is endemic in at least 98 countries. Due to the high toxicity and resistance associated with the drugs, we chose lignans as an alternative, due to their favorable properties of absorption, distribution, metabolism, excretion, and toxicity (ADMET). To investigate their leishmanicidal potential, the biological activities of a set of 160 lignans were predicted using predictive models that were built using data for Leishmania major and L. (Viannia) braziliensis. A combined analysis, based on ligand and structure, and several other computational approaches were used. The results showed that the combined analysis was able to select 11 lignans with potential activity against L. major and 21 lignans against L. braziliensis, with multitargeting effects and low or no toxicity. Of these compounds, four were isolated from the species Justicia aequilabris (Nees) Lindau. All of the identified compounds were able to inhibit the growth of L. braziliensis promastigotes, with the most active compound, (159) epipinoresinol-4-O-β-d-glucopyranoside, presenting an IC50 value of 5.39 µM and IC50 value of 36.51 µM for L. major. Our findings indicated the potential of computer-aided drug design and development and demonstrated that lignans represent promising prototype compounds for the development of multitarget drugs against leishmaniasis.
Collapse
|