1
|
Costa GL, Sautto GA. Towards an HCV vaccine: an overview of the immunization strategies for eliciting an effective B-cell response. Expert Rev Vaccines 2025; 24:96-120. [PMID: 39825640 DOI: 10.1080/14760584.2025.2452955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Fifty-eight million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development. The protective role of the humoral response directed against the HCV E2 glycoprotein is well established, and broadly neutralizing antibodies play a crucial role in effective viral clearance. AREAS COVERED This review explores the HCV targets and the different vaccination approaches, encompassing different expression systems, antigen selection strategies, and delivery methods, focusing on those aimed at eliciting a broad and effective humoral response. Our search criteria included the keywords 'HCV,' 'Hepatitis C,' and 'vaccine' using publicly available databases. Following the screening, 54 papers were selected. EXPERT OPINION The investigation of novel vaccine platforms beyond traditional approaches is necessary. While progress has been made in this direction, continued investigations on the HCV virology, immunology, and vaccinology are essential to surmount associated obstacles, heling in the development of an HCV vaccine that can benefit the global public health.
Collapse
Affiliation(s)
- Gabriel L Costa
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| |
Collapse
|
2
|
Zimna M, Krol E. Leishmania tarentolae as a platform for the production of vaccines against viral pathogens. NPJ Vaccines 2024; 9:212. [PMID: 39505865 PMCID: PMC11541885 DOI: 10.1038/s41541-024-01005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Infectious diseases remain a persistent public health problem and a leading cause of morbidity and mortality in both humans and animals. The most effective method of combating viral infections is the widespread use of prophylactic vaccinations, which are administered to both people at risk of disease and animals that may serve as significant sources of infection. Therefore, it is crucial to develop technologies for the production of vaccines that are highly effective, easy to transport and store, and cost-effective. The protein expression system based on the protozoan Leishmania tarentolae offers several advantages, validated by numerous studies, making it a good platform for producing vaccine antigens. This review provides a comprehensive overview into the potential applications of L. tarentolae for the safe production of effective viral antigens.
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
3
|
Costa GL, Sautto GA. Exploring T-Cell Immunity to Hepatitis C Virus: Insights from Different Vaccine and Antigen Presentation Strategies. Vaccines (Basel) 2024; 12:890. [PMID: 39204016 PMCID: PMC11359689 DOI: 10.3390/vaccines12080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The hepatitis C virus (HCV) is responsible for approximately 50 million infections worldwide. Effective drug treatments while available face access barriers, and vaccine development is hampered by viral hypervariability and immune evasion mechanisms. The CD4+ and CD8+ T-cell responses targeting HCV non-structural (NS) proteins have shown a role in the viral clearance. In this paper, we reviewed the studies exploring the relationship between HCV structural and NS proteins and their effects in contributing to the elicitation of an effective T-cell immune response. The use of different vaccine platforms, such as viral vectors and virus-like particles, underscores their versability and efficacy for vaccine development. Diverse HCV antigens demonstrated immunogenicity, eliciting a robust immune response, positioning them as promising vaccine candidates for protein/peptide-, DNA-, or RNA-based vaccines. Moreover, adjuvant selection plays a pivotal role in modulating the immune response. This review emphasizes the importance of HCV proteins and vaccination strategies in vaccine development. In particular, the NS proteins are the main focus, given their pivotal role in T-cell-mediated immunity and their sequence conservation, making them valuable vaccine targets.
Collapse
Affiliation(s)
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA;
| |
Collapse
|
4
|
La Rosa F, Varotto-Boccazzi I, Saresella M, Marventano I, Cattaneo GM, Hernis A, Piancone F, Otranto D, Epis S, Bandi C, Clerici M. The non-pathogenic protozoon Leishmania tarentolae interferes with the activation of NLRP3 inflammasome in human cells: new perspectives in the control of inflammation. Front Immunol 2024; 15:1298275. [PMID: 38707903 PMCID: PMC11066211 DOI: 10.3389/fimmu.2024.1298275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Background Innate immune responses against infectious agents can act as triggers of inflammatory diseases. On the other hand, various pathogens have developed mechanisms for the evasion of the immune response, based on an inhibition of innate immunity and inflammatory responses. Inflammatory diseases could thus be controlled through the administration of pathogens or pathogen-derived molecules, capable of interfering with the mechanisms at the basis of inflammation. In this framework, the NLRP3 inflammasome is an important component in innate antimicrobial responses and a major player in the inflammatory disease. Parasites of the genus Leishmania are master manipulators of innate immune mechanisms, and different species have been shown to inhibit inflammasome formation. However, the exploitation of pathogenic Leishmania species as blockers of NLRP3-based inflammatory diseases poses safety concerns. Methods To circumvent safety issues associated with pathogenic parasites, we focused on Leishmania tarentolae, a species of Leishmania that is not infectious to humans. Because NLRP3 typically develops in macrophages, in response to the detection and engulfment microorganisms, we performed our experiments on a monocyte-macrophage cell line (THP-1), either wild type or knockout for ASC, a key component of NLRP3 formation, with determination of cytokines and other markers of inflammation. Results L. tarentolae was shown to possess the capability of dampening the formation of NLRP3 inflammasome and the consequent expression of pro-inflammatory molecules, with minor differences compared to effects of pathogenic Leishmania species. Conclusion The non-pathogenic L. tarentolae appears a promising pro-biotic microbe with anti-inflammatory properties or a source of immune modulating cellular fractions or molecules, capable of interfering with the formation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center 'Romeo ed Enrica Invernizzi', University of Milan, Milan, Italy
| | | | | | | | - Ambra Hernis
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Sara Epis
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center 'Romeo ed Enrica Invernizzi', University of Milan, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center 'Romeo ed Enrica Invernizzi', University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Medina AC, Acevedo Ospina H, Descoteaux A. Immunomodulatory properties of Leishmania tarentolae extracellular vesicles containing the Spike protein of SARS-CoV-2. FRONTIERS IN PARASITOLOGY 2024; 3:1306478. [PMID: 39817166 PMCID: PMC11731608 DOI: 10.3389/fpara.2024.1306478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/22/2024] [Indexed: 01/18/2025]
Abstract
Extracellular vesicles released by the protozoan parasite Leishmania display immunomodulatory properties towards mammalian immune cells. In this study, we have evaluated the potential of extracellular vesicles derived from the non-pathogenic protozoan Leishmania tarentolae towards the development of a vaccine adjuvant. As a proof of concept, we expressed in L. tarentolae a codon-optimized SARS-CoV-2 Spike protein fused to the L. mexicana secreted acid phosphatase signal peptide in the N-terminal and to a 6×-His stretch in the C-terminal. Extracellular vesicles released by the engineered L. tarentolae were isolated by ultracentrifugation and fast protein liquid chromatography and were characterized via nanoparticle tracking analysis and transmission electron microscopy. The recombinant S protein was present in extracellular vesicles released by L. tarentolae, as determined by Western blot analyses and immunoelectron microscopy. Next, we evaluated the immunomodulatory potential of extracellular vesicles containing the S protein towards bone-marrow-derived macrophages and bone-marrow-derived dendritic cells. Our data show that in bone-marrow-derived dendritic cells, extracellular vesicles containing the S protein induced an increased expression of proinflammatory genes compared to plain extracellular vesicles whereas the opposite was observed in bone-marrow-derived macrophages. These findings reveal the immunomodulatory potential of L. tarentolae extracellular vesicles and provide a proof of concept that they can be used as adjuvant in the context of dendritic cell stimulation.
Collapse
Affiliation(s)
- Ana Catalina Medina
- INRS- Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
- Infectiopôle INRS, Laval, QC, Canada
| | - Hamlet Acevedo Ospina
- INRS- Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
- Infectiopôle INRS, Laval, QC, Canada
| | - Albert Descoteaux
- INRS- Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
- Infectiopôle INRS, Laval, QC, Canada
| |
Collapse
|
6
|
Zhang Y, Li S, Chu H, Li J, Lu S, Zheng B. A novel mRNA vaccine, TGGT1_278620 mRNA-LNP, prolongs the survival time in BALB/c mice with acute toxoplasmosis. Microbiol Spectr 2024; 12:e0286623. [PMID: 38038457 PMCID: PMC10783036 DOI: 10.1128/spectrum.02866-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Toxoplasma gondii, an obligate intracellular eukaryotic parasite, can infect about one-third of the world's population. One vaccine, Toxovax, has been developed and licensed commercially; however, it is only used in the sheep industry to reduce the losses caused by congenital toxoplasmosis. Various other vaccine approaches have been explored, including excretory secretion antigen vaccines, subunit vaccines, epitope vaccines, and DNA vaccines. However, current research has not yet developed a safe and effective vaccine for T. gondii. Here, we generated an mRNA vaccine candidate against T. gondii. We investigated the efficacy of vaccination with a novel identified candidate, TGGT1_278620, in a mouse infection model. We screened T. gondii-derived protective antigens at the genome-wide level, combined them with mRNA-lipid nanoparticle vaccine technology against T. gondii, and investigated immune-related factors and mechanisms. Our findings might contribute to developing vaccines for immunizing humans and animals against T. gondii.
Collapse
Affiliation(s)
- Yizhuo Zhang
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shiyu Li
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Hongkun Chu
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Jing Li
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Bandi C, Mendoza-Roldan JA, Otranto D, Alvaro A, Louzada-Flores VN, Pajoro M, Varotto-Boccazzi I, Brilli M, Manenti A, Montomoli E, Zuccotti G, Epis S. Leishmania tarentolae: a vaccine platform to target dendritic cells and a surrogate pathogen for next generation vaccine research in leishmaniases and viral infections. Parasit Vectors 2023; 16:35. [PMID: 36703216 PMCID: PMC9879565 DOI: 10.1186/s13071-023-05651-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
Parasites of the genus Leishmania are unusual unicellular microorganisms in that they are characterized by the capability to subvert in their favor the immune response of mammalian phagocytes, including dendritic cells. Thus, in overt leishmaniasis, dendritic cells and macrophages are converted into a niche for Leishmania spp. in which the parasite, rather than being inactivated and disassembled, survives and replicates. In addition, Leishmania parasites hitchhike onto phagocytic cells, exploiting them as a mode of transport to lymphoid tissues where other phagocytic cells are potentially amenable to parasite colonization. This propensity of Leishmania spp. to target dendritic cells has led some researchers to consider the possibility that the non-pathogenic, reptile-associated Leishmania tarentolae could be exploited as a vaccine platform and vehicle for the production of antigens from different viruses and for the delivery of the antigens to dendritic cells and lymph nodes. In addition, as L. tarentolae can also be regarded as a surrogate of pathogenic Leishmania parasites, this parasite of reptiles could possibly be developed into a vaccine against human and canine leishmaniases, exploiting its immunological cross-reactivity with other Leishmania species, or, after its engineering, for the expression of antigens from pathogenic species. In this article we review published studies on the use of L. tarentolae as a vaccine platform and vehicle, mainly in the areas of leishmaniases and viral infections. In addition, a short summary of available knowledge on the biology of L. tarentolae is presented, together with information on the use of this microorganism as a micro-factory to produce antigens suitable for the serodiagnosis of viral and parasitic infections.
Collapse
Affiliation(s)
- Claudio Bandi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Domenico Otranto
- grid.7644.10000 0001 0120 3326Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Alessandro Alvaro
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Massimo Pajoro
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | - Ilaria Varotto-Boccazzi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | - Matteo Brilli
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Emanuele Montomoli
- grid.511037.1VisMederi, Siena, Italy ,grid.9024.f0000 0004 1757 4641Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gianvincenzo Zuccotti
- grid.4708.b0000 0004 1757 2822Department of Biomedical and Clinical Sciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy ,Department of Pediatrics, Ospedale dei Bambini-Buzzi, Milan, Italy
| | - Sara Epis
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| |
Collapse
|
8
|
Efficacy of mucosal vaccination using a protozoan parasite as a vehicle for antigen delivery: IgG and neutralizing response after rectal administration of LeCoVax-2, a candidate vaccine against COVID-19. Pharmacol Res 2022; 186:106546. [PMCID: PMC9633108 DOI: 10.1016/j.phrs.2022.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
9
|
Mendoza‐Roldan JA, Votýpka J, Bandi C, Epis S, Modrý D, Tichá L, Volf P, Otranto D. Leishmania tarentolae: A new frontier in the epidemiology and control of the leishmaniases. Transbound Emerg Dis 2022; 69:e1326-e1337. [PMID: 35839512 PMCID: PMC9804434 DOI: 10.1111/tbed.14660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 01/05/2023]
Abstract
Leishmaniasis (or the leishmaniases), classified as a neglected tropical parasitic disease, is found in parts of the tropics, subtropics and southern Europe. Leishmania parasites are transmitted by the bite of phlebotomine sand flies and million cases of human infection occur annually. Leishmania tarentolae has been historically considered a non-pathogenic protozoan of reptiles, which has been studied mainly for its potential biotechnological applications. However, some strains of L. tarentolae appear to be transiently infective to mammals. In areas where leishmaniasis is endemic, recent molecular diagnostics and serological positivity to L. tarentolae in humans and dogs have spurred interest in the interactions between these mammalian hosts, reptiles and Leishmania infantum, the main aetiologic agent of human and canine leishmaniasis. In this review, we discuss the systematics and biology of L. tarentolae in the insect vectors and the vertebrate hosts and address questions about evolution of reptilian leishmaniae. Furthermore, we discuss the possible usefulness of L. tarentolae for new vaccination strategies.
Collapse
Affiliation(s)
| | - Jan Votýpka
- Department of Parasitology, Faculty of ScienceCharles UniversityPragueCzech Republic,Biology Centre, Institute of ParasitologyCzech Academy of SciencesČeské BudějoviceCzech Republic
| | - Claudio Bandi
- Department of Biosciences and Pediatric CRC “Romeo ed Enrica Invernizzi”University of MilanMilanItaly
| | - Sara Epis
- Department of Biosciences and Pediatric CRC “Romeo ed Enrica Invernizzi”University of MilanMilanItaly
| | - David Modrý
- Biology Centre, Institute of ParasitologyCzech Academy of SciencesČeské BudějoviceCzech Republic,Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life SciencesPragueCzech Republic
| | - Lucie Tichá
- Department of Parasitology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Domenico Otranto
- Department of Veterinary MedicineUniversity of BariValenzanoItaly,Department of Pathobiology, Faculty of Veterinary ScienceBu‐Ali Sina UniversityHamedanIran
| |
Collapse
|
10
|
Leishmania tarentolae as an Antigen Delivery Platform: Dendritic Cell Maturation after Infection with a Clone Engineered to Express the SARS-CoV-2 Spike Protein. Vaccines (Basel) 2022; 10:vaccines10050803. [PMID: 35632559 PMCID: PMC9144667 DOI: 10.3390/vaccines10050803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 01/18/2023] Open
Abstract
Background: Protozoa of the genus Leishmania are characterized by their capacity to target macrophages and Dendritic Cells (DCs). These microorganisms could thus be exploited for the delivery of antigens to immune cells. Leishmania tarentolae is regarded as a non-pathogenic species; it was previously used as a biofactory for protein production and has been considered as a candidate vaccine or as an antigen delivery platform. However, results on the type of immune polarization determined by L. tarentolae are still inconclusive. Methods: DCs were derived from human monocytes and exposed to live L. tarentolae, using both the non-engineered P10 strain, and the same strain engineered for expression of the spike protein from SARS-CoV-2. We then determined: (i) parasite internalization in the DCs; and (ii) the capacity of the assayed strains to activate DCs and the type of immune polarization. Results: Protozoan parasites from both strains were effectively engulfed by DCs, which displayed a full pattern of maturation, in terms of MHC class II and costimulatory molecule expression. In addition, after parasite infection, a limited release of Th1 cytokines was observed. Conclusions: Our results indicate that L. tarentolae could be used as a vehicle for antigen delivery to DCs and to induce the maturation of these cells. The limited cytokine release suggests L. tarentolae as a neutral vaccine vehicle that could be administered in association with appropriate immune-modulating molecules.
Collapse
|
11
|
Hajikhezri Z, Roohvand F, Maleki M, Shahmahmoodi S, Amirzargar AA, Keshavarz A, Seyed N, Farahmand M, Samimi-Rad K. HCV Core/NS3 Protein Immunization with "N-Terminal Heat Shock gp96 Protein (rNT (gp96))" Induced Strong and Sustained Th1-Type Cytokines in Immunized Mice. Vaccines (Basel) 2021; 9:vaccines9030215. [PMID: 33802466 PMCID: PMC7999198 DOI: 10.3390/vaccines9030215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
Feeble cellular responses induced by T cell-based vaccines are a major challenge for the development of an effective vaccine against Hepatitis C virus (HCV) infection. To address this challenge, the potential of N-terminal fragment of gp96 heat shock protein (rNT (gp96) as an adjuvant was evaluated and compared to that of the CpG (as a recognized Th1-type adjuvant) in the formulation of HCV core/NS3 antigens in three immunization strategies of protein/protein, DNA/DNA, and DNA/protein. Immunized mice were evaluated for elicited immune responses in week 3 (W3) and 11 post-immunizations. Our results demonstrated that the protein (subunit) vaccine formulated with rNT (gp96) in protein/protein strategy (core/NS3 + gp96) was significantly more efficient than CpG oligodeoxynucleotides (CpG ODN) formulation and all other immunization strategies in the induction of Th1-type cytokines. This group of mice (core/NS3 + gp96) also elicited a high level of anti-Core-NS3 total immunoglobulin G (IgG) with dominant IgG2a isotype at W3. Thus, the co-administration of recombinant NT (gp96) protein with rHCV proteins might be a promising approach in the formulation of HCV subunit vaccine candidates for induction of high levels of Th1 cytokines and humoral responses.
Collapse
Affiliation(s)
- Zamaneh Hajikhezri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1449614535, Iran; (Z.H.); (S.S.); (A.K.); (M.F.)
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Monireh Maleki
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Islamic Azad University of Tehran, Tehran 1477893855, Iran;
| | - Shohreh Shahmahmoodi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1449614535, Iran; (Z.H.); (S.S.); (A.K.); (M.F.)
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Akbar Amirzargar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran 1449614535, Iran;
- Immunogenetic Laboratory, Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1449614535, Iran
| | - Abolfazl Keshavarz
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1449614535, Iran; (Z.H.); (S.S.); (A.K.); (M.F.)
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1449614535, Iran; (Z.H.); (S.S.); (A.K.); (M.F.)
| | - Katayoun Samimi-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1449614535, Iran; (Z.H.); (S.S.); (A.K.); (M.F.)
- Correspondence: ; Tel.: +98-2188950595; Fax: +98-2188962343
| |
Collapse
|
12
|
Guo B, Xu P, Chai D, Cao L, Liu L, Song T, Hu S, Chen Y, Yan X, Xu T. gB co-immunization with GP96 enhances pulmonary-resident CD8 T cells and exerts a long-term defence against MCMV pneumonitis. J Cell Mol Med 2020; 24:14426-14440. [PMID: 33155438 PMCID: PMC7754068 DOI: 10.1111/jcmm.16065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection in the respiratory tract leads to pneumonitis in immunocompromised hosts without available vaccine. Considering cytomegalovirus (CMV) mainly invades through the respiratory tract, CMV-specific pulmonary mucosal vaccine development that provides a long-lasting protection against CMV challenge gains our attention. In this study, N-terminal domain of GP96 (GP96-NT) was used as a mucosal adjuvant to enhance the induction of pulmonary-resident CD8 T cells elicited by MCMV glycoprotein B (gB) vaccine. Mice were intranasally co-immunized with 50 μg pgB and equal amount of pGP96-NT vaccine 4 times at 2-week intervals, and then i.n. challenged with MCMV at 16 weeks after the last immunization. Compared with pgB immunization alone, co-immunization with pgB/pGP96-NT enhanced a long-lasting protection against MCMV pneumonitis by significantly improved pneumonitis pathology, enhanced bodyweight, reduced viral burdens and increased survival rate. Moreover, the increased CD8 T cells were observed in lung but not spleen from pgB/pGP96-NT co-immunized mice. The increments of pulmonary CD8 T cells might be mainly due to non-circulating pulmonary-resident CD8 T-cell subset expansion but not circulating CD8 T-cell populations that home to inflammation site upon MCMV challenge. Finally, the deterioration of MCMV pneumonitis by depletion of pulmonary site-specific CD8 T cells in mice that were pgB/pGP96-NT co-immunization might be a clue to interpret the non-circulating pulmonary-resident CD8 T subset expansion. These data might uncover a promising long-lasting prophylactic vaccine strategy against MCMV-induced pneumonitis.
Collapse
Affiliation(s)
- Bingnan Guo
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Peifeng Xu
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lei Cao
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lin Liu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tengfei Song
- The Feinstein Institute for Medical Research, Manhasset, New York, NY, USA
| | - Shuqun Hu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuling Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xianliang Yan
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tie Xu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Emergency, Nanjing Jiangning Hospital, Nanjing, China
| |
Collapse
|