1
|
Saatloo MV, Delisi D, Eskandari N, Krieg C, Gentile S. Kv11.1-dependent senescence activates a lethal immune response via tumor necrosis factor alpha. Neoplasia 2025; 63:101148. [PMID: 40117717 PMCID: PMC11981764 DOI: 10.1016/j.neo.2025.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025]
Abstract
Understanding the complex relationship between cancer and immune surveillance is essential for leveraging the immune system to control tumor growth. In our study, we discovered that activating the Kv11.1 potassium channel in ER+ breast cancer cells induces a senescent phenotype, which in turn triggers a potent immune response against these senescent cells. Specifically, we found that the senescence-associated secretory phenotype (SASP) plays a crucial role in activating CD4+ T-helper 1 (Th1) cells and memory T cell phenotypes. This activation led to the release of tumor necrosis factor-alpha (TNFα), which induced the death of senescent breast cancer cells, independent of their resistance to endocrine therapy. Our findings suggest that Kv11.1 channel-induced cellular senescence in ER+ breast cancer cells is a key mechanism in immune surveillance, driving a lethal immune response through TNFα. These results highlight the potential immunomodulatory role of Kv11.1 activation in ER-positive breast cancer and provide a foundation for future therapeutic investigations.
Collapse
Affiliation(s)
- Maedeh Vakili Saatloo
- Department of Biochemistry and Molecular Biology; Medical University South Carolina, Charleston, SC 29425, USA; Department of Periodontology, Henry M. Goldman School of Dental Medicine, Boston University, MA, USA
| | - Davide Delisi
- Department of Biochemistry and Molecular Biology; Medical University South Carolina, Charleston, SC 29425, USA
| | - Najmeh Eskandari
- Department of Biochemistry and Molecular Biology; Medical University South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University South Carolina, Charleston, SC 29425, USA
| | - Saverio Gentile
- Department of Biochemistry and Molecular Biology; Medical University South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Imani S, Farghadani R, Roozitalab G, Maghsoudloo M, Emadi M, Moradi A, Abedi B, Jabbarzadeh Kaboli P. Reprogramming the breast tumor immune microenvironment: cold-to-hot transition for enhanced immunotherapy. J Exp Clin Cancer Res 2025; 44:131. [PMID: 40281554 PMCID: PMC12032666 DOI: 10.1186/s13046-025-03394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
This review discusses reprogramming the breast tumor immune microenvironment from an immunosuppressive cold state to an immunologically active hot state. A complex interplay is revealed, in which the accumulation of metabolic byproducts-such as lactate, reactive oxygen species (ROS), and ammonia-is shown to impair T-cell function and promote tumor immune escape. It is demonstrated that the tumor microenvironment (TME) is dominated by immunosuppressive cytokines, including interleukin-10 (IL-10), transforming growth factorβ (TGFβ), and IL-35. Notably, IL-35 is produced by regulatory T cells and breast cancer cells. The conversion of conventional T cells into IL-35-producing induced regulatory T cells, along with the inhibition of pro-inflammatory cytokine secretion, contributes to the suppression of anti-tumor immunity. It is further demonstrated that key immune checkpoint molecules-such as PD-1, PDL1, CTLA-4, TIM-3, LAG-3, and TIGIT-are upregulated within the TME, leading to Tcell exhaustion and diminished immune responses. The blockade of these checkpoints is shown to restore T-cell functionality and is proposed as a strategy to convert cold tumors into hot ones with robust effector cell infiltration. The therapeutic potential of chimeric antigen receptor (CAR)T cell therapy is also explored, and targeting specific tumor-associated antigens, such as glycoproteins and receptor tyrosine kinases, is highlighted. It is suggested that CART cell efficacy can be enhanced by combining these cells with immune checkpoint inhibitors and other immunomodulatory agents, thereby overcoming the barriers imposed by the immunosuppressive TME. Moreover, the role of the microbiome in regulating estrogen metabolism and systemic inflammation is reviewed. Alterations in the gut microbiota are shown to affect the TME, and microbiome-based interventions are proposed as an additional means to facilitate the cold-to-hot transition. It is concluded that by targeting the metabolic and immunological pathways that underpin immune suppression-through combination strategies involving checkpoint blockade, CART cell therapies, and microbiome modulation-the conversion of the breast TME from cold to hot can be achieved. This reprogramming is anticipated to enhance immune cell infiltration and function, thereby improving the overall efficacy of immunotherapies and leading to better clinical outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China.
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500, Selangor Darul Ehsan, Malaysia
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Mahdieh Emadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Atefeh Moradi
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Parham Jabbarzadeh Kaboli
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, 02-091, Poland.
| |
Collapse
|
3
|
Chen S, Wu X, Yang Y, Xu X, Xiong X, Meng W. Increased pathogenicity and pro-inflammatory capabilities of mucosal-associated invariant T cells involved in Oral Lichen Planus. BMC Oral Health 2024; 24:829. [PMID: 39039547 PMCID: PMC11264365 DOI: 10.1186/s12903-024-04621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells assume pivotal roles in numerous autoimmune inflammatory maladies. However, scant knowledge exists regarding their involvement in the pathological progression of oral lichen planus (OLP). The focus of our study was to explore whether MAIT cells were altered across distinct clinical types of OLP. METHODS The frequency, phenotype, and partial functions of MAIT cells were performed by flow cytometry, using peripheral blood from 18 adults with non-erosive OLP and 22 adults with erosive OLP compared with 15 healthy adults. We also studied the changes in MAIT cells in 15 OLP patients receiving and 10 not receiving corticosteroids. Surface proteins including CD4, CD8, CD69, CD103, CD38, HLA-DR, Tim-3, Programmed Death Molecule-1 (PD-1), and related factors released by MAIT cells such as Granzyme B (GzB), interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-17A, and IL-22 were detected. RESULTS Within non-erosive OLP patients, MAIT cells manifested an activated phenotype, evident in an elevated frequency of CD69+ CD38+ MAIT cells (p < 0.01). Conversely, erosive OLP patients displayed an activation and depletion phenotype in MAIT cells, typified by elevated CD69 (p < 0.01), CD103 (p < 0.05), and PD-1 expression (p < 0.01). Additionally, MAIT cells exhibited heightened cytokine production, encompassing GzB, IFN-γ, and IL-17A in erosive OLP patients. Notably, the proportion of CD103+ MAIT cells (p < 0.05) and GzB secretion (p < 0.01) by MAIT cells diminished, while the proportion of CD8+ MAIT cells (p < 0.05) rose in OLP patients with corticosteroid therapy. CONCLUSIONS MAIT cells exhibit increased pathogenicity and pro-inflammatory capabilities in OLP. Corticosteroid therapy influences the expression of certain phenotypes and functions of MAIT cells in the peripheral blood of OLP patients.
Collapse
Affiliation(s)
- Siting Chen
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong Province, 510280, P.R. China
| | - Xiaoli Wu
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong Province, 510280, P.R. China
| | - Yinshen Yang
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong Province, 510280, P.R. China
| | - Xiaoheng Xu
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong Province, 510280, P.R. China
| | - Xiaoqin Xiong
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong Province, 510280, P.R. China
| | - Wenxia Meng
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University NO.366, Jiangnan Road, Guangzhou, Guangdong Province, 510280, P.R. China.
| |
Collapse
|
4
|
Wu M, Wang S, Yuan K, Xiong B, Li Y, Lyu S. Alteration of the immune microenvironment in the axillary metastatic lymph nodes of luminal A breast cancer patients. World J Surg Oncol 2024; 22:172. [PMID: 38937736 PMCID: PMC11210032 DOI: 10.1186/s12957-024-03454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The alteration of the immune microenvironment in the axillary metastatic lymph nodes of luminal A breast cancer patients is still unclear. METHODS Postsurgical tissues from the enrolled luminal A BCs were divided into five categories: primary BC lesion at stage N0 (PL1), primary BC lesion at stage N1 (PL2), negative axillary lymph node at stage N0 BC (LN1), negative axillary lymph node at stage N1 BC (LN2), and positive axillary lymph node at stage N1 BC (LN3). The frequencies of positive immune markers (CD4, CD8, PD1, PD-L1, T-cell immunoglobulin and mucin domain 3 (TIM3), and forkhead box protein 3 (Foxp3)) in the above tissues were quantified by AKOYA Opal Polaris 7 Color Manual IHC Detection Kit. RESULTS A total of 50 female patients with luminal A BC were enrolled in this study. Among these patients, 23 had stage N1 disease, and 27 had stage N0 disease. Compared with that in the PL2 subgroup, the frequency of PD-1-positive cells was significantly greater in the PL1 subgroup, whether at the stromal or intratumoral level (P value < 0.05). Both the frequency of CD8 + T cells in LN1 and that in LN2 were significantly greater than that in LN3 (P value < 0.05). The frequency of TIM3 + T cells in LN1 was significantly greater than that in PL1 (P value < 0.05). The frequency of CD8 + TIM3 + T cells was significantly greater in both the LN2 and LN3 groups than in the PL2 group (P value < 0.05). The frequency of CD4 + Foxp3 + T cells was significantly greater in LN1 than in PL1 (P value < 0.05), which was the same for both LN3 and PL2 (P value < 0.05). CONCLUSION Increased frequencies of CD8 + PD1+, CD8 + TIM3 + and CD4 + Foxp3 + T cells might inhibit the immune microenvironment of axillary metastatic lymph nodes in luminal A breast cancer patients and subsequently promote lymph node metastasis.
Collapse
Affiliation(s)
- Min Wu
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China
| | - Shuo Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing, 100038, China
| | - Keyu Yuan
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China
| | - Bingjun Xiong
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China
| | - Yanping Li
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China
| | - Shuzhen Lyu
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China.
| |
Collapse
|
5
|
Zareinejad M, Mehdipour F, Roshan-Zamir M, Faghih Z, Ghaderi A. Dual Functions of T Lymphocytes in Breast Carcinoma: From Immune Protection to Orchestrating Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:4771. [PMID: 37835465 PMCID: PMC10571747 DOI: 10.3390/cancers15194771] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) is the most common cancer type in women and the second leading cause of death. Despite recent advances, the mortality rate of BC is still high, highlighting a need to develop new treatment strategies including the modulation of the immune system and immunotherapies. In this regard, understanding the complex function of the involved immune cells and their crosstalk with tumor cells is of great importance. T-cells are recognized as the most important cells in the tumor microenvironment and are divided into several subtypes including helper, cytotoxic, and regulatory T-cells according to their transcription factors, markers, and functions. This article attempts to provide a comprehensive review of the role of T-cell subsets in the prognosis and treatment of patients with BC, and crosstalk between tumor cells and T-cells. The literature overwhelmingly contains controversial findings mainly due to the plasticity of T-cell subsets within the inflammatory conditions and the use of different panels for their phenotyping. However, investigating the role of T-cells in BC immunity depends on a variety of factors including tumor types or subtypes, the stage of the disease, the localization of the cells in the tumor tissue and the presence of different cells or cytokines.
Collapse
Affiliation(s)
| | | | | | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| |
Collapse
|
6
|
Cheng Z, Ma J, Yin L, Yu L, Yuan Z, Zhang B, Tian J, Du Y. Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: opportunities from preclinical to clinical applications. Eur J Nucl Med Mol Imaging 2023; 50:1111-1133. [PMID: 36443568 DOI: 10.1007/s00259-022-06056-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
Lymph node metastasis is an indicator of the invasiveness and aggressiveness of cancer. It is a vital prognostic factor in clinical staging of the disease and therapeutic decision-making. Patients with positive metastatic lymph nodes are likely to develop recurrent disease, distant metastasis, and succumb to death in the coming few years. Lymph node dissection and histological analysis are needed to detect whether regional lymph nodes have been infiltrated by cancer cells and determine the likely outcome of treatment and the patient's chances of survival. However, these procedures are invasive, and tissue biopsies are prone to sampling error. In recent years, advanced molecular imaging with novel imaging probes has provided new technologies that are contributing to comprehensive management of cancer, including non-invasive investigation of lymphatic drainage from tumors, identifying metastatic lymph nodes, and guiding surgeons to operate efficiently in patients with complex lesions. In this review, first, we outline the current status of different molecular imaging modalities applied for lymph node metastasis management. Second, we summarize the multi-functional imaging probes applied with the different imaging modalities as well as applications of cancer lymph node metastasis from preclinical studies to clinical translations. Third, we describe the limitations that must be considered in the field of molecular imaging for improved detection of lymph node metastasis. Finally, we propose future directions for molecular imaging technology that will allow more personalized treatment plans for patients with lymph node metastasis.
Collapse
Affiliation(s)
- Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaojiao Ma
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Leyi Yu
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.
| | - Bo Zhang
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
7
|
Bailly C, Thuru X, Goossens L, Goossens JF. Soluble TIM-3 as a biomarker of progression and therapeutic response in cancers and other of human diseases. Biochem Pharmacol 2023; 209:115445. [PMID: 36739094 DOI: 10.1016/j.bcp.2023.115445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Immune checkpoints inhibition is a privileged approach to combat cancers and other human diseases. The TIM-3 (T cell immunoglobulin and mucin-domain containing-3) inhibitory checkpoint expressed on different types of immune cells is actively investigated as an anticancer target, with a dozen of monoclonal antibodies in (pre)clinical development. A soluble form sTIM-3 can be found in the plasma of patients with cancer and other diseases. This active circulating protein originates from the proteolytic cleavage by two ADAM metalloproteases of the membrane receptor shared by tumor and non-tumor cells, and extracellular vesicles. In most cancers but not all, overexpression of mTIM-3 at the cell surface leads to high level of sTIM-3. Similarly, elevated levels of sTIM-3 have been reported in chronic autoimmune diseases, inflammatory gastro-intestinal diseases, certain viral and parasitic diseases, but also in cases of organ transplantation and in pregnancy-related pathologies. We have analyzed the origin of sTIM-3, its methods of dosage in blood or plasma, its presence in multiple diseases and its potential role as a biomarker to follow disease progression and/or the treatment response. In contrast to sPD-L1 generated by different classes of proteases and by alternative splicing, sTIM-3 is uniquely produced upon ADAM-dependent shedding, providing a more homogenous molecular entity and a possibly more reliable molecular marker. However, the biological functionality of sTIM-3 remains insufficiently characterized. The review shed light on pathologies associated with an altered expression of sTIM-3 in human plasma and the possibility to use sTIM-3 as a diagnostic or therapeutic marker.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France.
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Laurence Goossens
- University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, 59000 Lille, France
| | - Jean-François Goossens
- University of Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, 59000 Lille, France
| |
Collapse
|
8
|
Cong Y, Liu J, Chen G, Qiao G. The Emerging Role of T-Cell Immunoglobulin Mucin-3 in Breast Cancer: A Promising Target For Immunotherapy. Front Oncol 2021; 11:723238. [PMID: 34504800 PMCID: PMC8421567 DOI: 10.3389/fonc.2021.723238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Cancer treatment through immune checkpoint receptor blockade has made significant advances in the recent years. However, resistance to the current immune checkpoint inhibitors (ICIs) has been observed in many patients, who consequently do not respond to these treatments. T-cell immunoglobulin mucin-3 (Tim-3) is a novel immune checkpoint molecule emerging as a potential therapeutic target for cancer immunotherapy. Epidemiologic findings reveal that genetic polymorphisms in the Tim-3 gene are associated with increased susceptibility to breast cancer. In patients with breast cancer, Tim-3 is expressed both on immune and tumor cells. Accumulating evidence demonstrates that Tim-3 can notably affect breast cancer treatment outcome and prognosis. Therefore, Tim-3 is being regarded as a high-potential target for improving breast cancer therapy. In this review, we summarize the role of Tim-3 in breast cancer and the regulation mechanisms of Tim-3 to furnish evidences for future research and therapy.
Collapse
Affiliation(s)
- Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jing Liu
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Gang Chen
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
9
|
Liang M, Gong D, Wang L, Liang X, Meng J, Huang W, Zhou J. PAX5 haploinsufficiency induced CD8+ T cells dysfunction or exhaustion by high expression of immune inhibitory-related molecules. Cancer Treat Res Commun 2021; 28:100437. [PMID: 34425470 DOI: 10.1016/j.ctarc.2021.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022]
Abstract
PURPOSE PAX5 haploinsufficiency promoting tumorigenesis is related to immune escape. But the mechanisms of PAX5 mutations inducing tumor immune escape have not been clarified. Our aim was to study how PAX5 haploinsufficiency influences effector CD8 + T cells in tumor microenvironment. METHODS We estimated the proportions of 22 immune cell types and the expressions of immune inhibitory-related molecules based on gene expression profiles (GEPs) from children's B- acute lymphoblastic leukemia(B-ALL) with PAX5 mutations by CIBERSORT, an established algorithm. We constructed the PAX5 haplodeletion A20 cell lines, built allografted A20 tumor models and evaluated the effect of PAX5 haplodeletion on immune inhibitory-related molecules in the tumor microenvironment (TME). RESULTS Our results indicated the percentages of T cells in bone marrow of children's B-ALL with PAX5 mutations were not statistically different from that in bone marrow of B-ALL without PAX5 mutations, except for T follicular helper (Tfh) cells. But a variety of up-regulated immune inhibitory-related molecules in bone marrow of children's B- ALL with PAX5 mutations were identified. By different approaches, we found that several immune inhibitory-related molecules of CD8+ T cells in TME of PAX5 haplodeletion clones such as TIM3, NR4A1 and BATF, were increased significantly compared with that of PAX5 wild type control. The IFN-ɤ of CD8+ T cells in TME of PAX5 haplodeletion tumors was decreased significantly compared with that of PAX5 wild type control. CONCLUSION Our study showed that PAX5 haploinsufficiency induced CD8+ T cells dysfunction or exhaustion by high expression of TIM3, NR4A1 and BATF in the CD8+ T cells of TME.
Collapse
Affiliation(s)
- Mi Liang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China
| | - Duanhao Gong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China
| | - Lei Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China
| | - Xue Liang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China
| | - Jiao Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China
| | - Wei Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China.
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China
| |
Collapse
|
10
|
Ghods A, Mehdipour F, Shariat M, Talei AR, Ghaderi A. Regulatory T cells express Tumor Necrosis Factor Receptor 2 with the highest intensity among CD4 + T cells in the draining lymph nodes of breast cancer. Mol Immunol 2021; 137:52-56. [PMID: 34214829 DOI: 10.1016/j.molimm.2021.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/27/2021] [Accepted: 06/20/2021] [Indexed: 12/16/2022]
Abstract
Tumor Necrosis Factor Receptor 2 (TNFR2) is one of the receptors of TNF-α, which is expressed on various cell types. TNFR2 signaling has a balancing role between regulatory and effector functions of T cells. Herein, we investigated the expression of TNFR2 on regulatory T cells (Tregs) and non-Tregs in breast tumor-draining lymph nodes. Mononuclear cells were isolated from 16 axillary lymph nodes, and the expressions of TNFR2, Foxp3 and CD25 were assessed in CD4+ T cells by flow cytometry. Our results showed that the majority of TNFR2+CD4+ T cells were Foxp3-CD25-. However, the percentage of TNFR2+ cells was significantly higher in Foxp3+CD25+CD4+ Tregs compared to Foxp3-CD25-CD4+, Foxp3+CD25-CD4+, and Foxp3-CD25+CD4+ T cell subsets. Among these subsets, Foxp3+CD25+TNFR2+CD4+ T cells were found to have the highest intensity of TNFR2 expression. The intensity of Foxp3 expression in Foxp3+CD25+TNFR2+CD4+ Treg cells was significantly higher than in their TNFR2- counterpart. Collectively, we showed that most of TNFR2+CD4+ T lymphocytes were Foxp3-CD25-, while the majority of Foxp3+CD25+CD4+ Tregs were TNFR2+, and they expressed TNFR2 with the highest intensity. This report highlights the importance of TNFR2 expression on Tregs and paves the way for further investigation of the effects of TNF-α on the suppressive activity of Tregs in the tumor microenvironment.
Collapse
Affiliation(s)
- Atri Ghods
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahmoud Shariat
- Department of Pathology, Shiraz Central Hospital, Shiraz, Iran
| | - Abdol-Rasoul Talei
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|