1
|
Tasiheng Y, Lin X, Wang X, Zou X, Chen Y, Yan Y, Ma M, Dai Z, Wang X, Yu X, Cheng H, Liu C. DNA hypo-methylation and expression of GBP4 induces T cell exhaustion in pancreatic cancer. Cancer Immunol Immunother 2024; 73:208. [PMID: 39110249 PMCID: PMC11306721 DOI: 10.1007/s00262-024-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Immunotherapy for pancreatic ductal carcinoma (PDAC) remains disappointing due to the repressive tumor microenvironment and T cell exhaustion, in which the roles of interferon-stimulated genes were largely unknown. Here, we focused on a typical interferon-stimulated gene, GBP4, and investigated its potential diagnostic and therapeutic value in pancreatic cancer. Expression analysis on both local samples and public databases indicated that GBP4 was one of the most dominant GBP family members present in the PDAC microenvironment, and the expression level of GBP4 was negatively associated with patient survival. We then identified DNA hypo-methylation in regulatory regions of GBP4 in PDAC, and validated its regulatory role on GBP4 expression via performing targeted methylation using dCas9-SunTag-DNMAT3A-sgRNA-targeted methylation system on selected DNA locus. After that, we investigated the downstream functions of GBP4, and chemotaxis assays indicated that GBP4 overexpression significantly improved the infiltration of CD8+T cells, but also induced upregulation of immune checkpoint genes and T cell exhaustion. Lastly, in vitro T cell killing assays using primary organoids suggested that the PDAC samples with high level of GBP4 expression displayed significantly higher sensitivity to anti-PD-1 treatment. Taken together, our studies revealed the expression patterns and epigenetic regulatory mechanisms of GBP4 in pancreatic cancer and clarified the effects of GBP4 on T cell exhaustion and antitumor immunology.
Collapse
Affiliation(s)
- Yesiboli Tasiheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Cancer Research Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
| | - Xuan Zou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Yusheng Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Yu Yan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Mingjian Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Zhengjie Dai
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
| |
Collapse
|
2
|
Rashmi D, Gupta S, Kausar T, Sau AK. Helical domain of hGBP3 cannot stimulate the second phosphate cleavage of GTP. J Biol Chem 2024; 300:105696. [PMID: 38301888 PMCID: PMC10910063 DOI: 10.1016/j.jbc.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Interferon-gamma-inducible large GTPases, hGBPs, possess antipathogenic and antitumor activities in human cells. Like hGBP1, its closest homolog, hGBP3 has two domains; an N-terminal catalytic domain and a C-terminal helical domain, connected by an intermediate region. The biochemical function of this protein and the role of its domains in substrate hydrolysis have not yet been investigated. Here, we report that while hGBP3 can produce both GDP and GMP, GMP is the minor product, 30% (unlike 85% in hGBP1), indicating that hGBP3 is unable to produce enhanced GMP. To understand which domain(s) are responsible for this deficiency, we created hGBP3 truncated variants. Surprisingly, GMP production was similar upon deletion of the helical domain, suggesting that in contrast to hGBP1, the helical domain of hGBP3 cannot stimulate the second phosphate cleavage of GTP. We conducted computational and solution studies to understand the underlying basis. We found that the regulatory residue W79, present in the catalytic domain, forms an H-bond with the backbone carbonyl of K76 (located in the catalytic loop) of the substrate-bound hGBP3. However, after gamma-phosphate cleavage of GTP, the W79-containing region does not undergo a conformational change, failing to redirect the catalytic loop toward the beta-phosphate. This is necessary for efficient GMP formation because hGBP homologs utilize the same catalytic residue for both phosphate cleavages. We suggest that the lack of specific interdomain contacts mediated by the helical domain prevents the catalytic loop movement, resulting in reduced GMP formation. These findings may provide insight into how hGBP3 contributes to immunity.
Collapse
Affiliation(s)
- Divya Rashmi
- Protein Engineering Laboratory, National Institute of Immunology, New Delhi, India
| | - Sowmiya Gupta
- Protein Engineering Laboratory, National Institute of Immunology, New Delhi, India
| | - Tasneem Kausar
- Protein Engineering Laboratory, National Institute of Immunology, New Delhi, India
| | - Apurba Kumar Sau
- Protein Engineering Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
3
|
Pinheiro A, Borges JR, Côrte-Real JV, Esteves PJ. Evolution of guanylate binding protein genes shows a remarkable variability within bats (Chiroptera). Front Immunol 2024; 15:1329098. [PMID: 38357541 PMCID: PMC10864436 DOI: 10.3389/fimmu.2024.1329098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Background GBPs (guanylate binding proteins), an evolutionary ancient protein family, play a key role in the host's innate immune response against bacterial, parasitic and viral infections. In Humans, seven GBP genes have been described (GBP1-7). Despite the interest these proteins have received over the last years, evolutionary studies have only been performed in primates, Tupaia and rodents. These have shown a pattern of gene gain and loss in each family, indicative of the birth-and-death evolution process. Results In this study, we analysed the evolution of this gene cluster in several bat species, belonging to the Yangochiroptera and Yinpterochiroptera sub-orders. Detailed analysis shows a conserved synteny and a gene expansion and loss history. Phylogenetic analysis showed that bats have GBPs 1,2 and 4-6. GBP2 has been lost in several bat families, being present only in Hipposideidae and Pteropodidae. GBPs1, 4 and 5 are present mostly as single-copy genes in all families but have suffered duplication events, particularly in Myotis myotis and Eptesicus fuscus. Most interestingly, we demonstrate that GBP6 duplicated in a Chiroptera ancestor species originating two genes, which we named GBP6a and GBP6b, with different subsequent evolutionary histories. GBP6a underwent several duplication events in all families while GBP6b is present as a single copy gene and has been lost in Pteropodidae, Miniopteridae and Desmodus rotundus, a Phyllostomidae. With 14 and 15 GBP genes, Myotis myotis and Eptesicus fuscus stand out as having far more copies than all other studied bat species. Antagonistically, Pteropodidae have the lowest number of GBP genes in bats. Conclusion Bats are important reservoirs of viruses, many of which have become zoonotic diseases in the last decades. Further functional studies on bats GBPs will help elucidate their function, evolutionary history, and the role of bats as virus reservoirs.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - J. Ricardo Borges
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - João Vasco Côrte-Real
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU) München, Munich, Germany
| | - Pedro J. Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| |
Collapse
|
4
|
Schelle L, Côrte-Real JV, Fayyaz S, del Pozo Ben A, Shnipova M, Petersen M, Lotke R, Menon B, Matzek D, Pfaff L, Pinheiro A, Marques JP, Melo-Ferreira J, Popper B, Esteves PJ, Sauter D, Abrantes J, Baldauf HM. Evolutionary and functional characterization of lagomorph guanylate-binding proteins: a story of gain and loss and shedding light on expression, localization and innate immunity-related functions. Front Immunol 2024; 15:1303089. [PMID: 38348040 PMCID: PMC10859415 DOI: 10.3389/fimmu.2024.1303089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Abstract
Guanylate binding proteins (GBPs) are an evolutionarily ancient family of proteins that are widely distributed among eukaryotes. They belong to the dynamin superfamily of GTPases, and their expression can be partially induced by interferons (IFNs). GBPs are involved in the cell-autonomous innate immune response against bacterial, parasitic and viral infections. Evolutionary studies have shown that GBPs exhibit a pattern of gene gain and loss events, indicative for the birth-and-death model of evolution. Most species harbor large GBP gene clusters that encode multiple paralogs. Previous functional and in-depth evolutionary studies have mainly focused on murine and human GBPs. Since rabbits are another important model system for studying human diseases, we focus here on lagomorphs to broaden our understanding of the multifunctional GBP protein family by conducting evolutionary analyses and performing a molecular and functional characterization of rabbit GBPs. We observed that lagomorphs lack GBP3, 6 and 7. Furthermore, Leporidae experienced a loss of GBP2, a unique duplication of GBP5 and a massive expansion of GBP4. Gene expression analysis by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and transcriptome data revealed that leporid GBP expression varied across tissues. Overexpressed rabbit GBPs localized either uniformly and/or discretely to the cytoplasm and/or to the nucleus. Oryctolagus cuniculus (oc)GBP5L1 and rarely ocGBP5L2 were an exception, colocalizing with the trans-Golgi network (TGN). In addition, four ocGBPs were IFN-inducible and only ocGBP5L2 inhibited furin activity. In conclusion, from an evolutionary perspective, lagomorph GBPs experienced multiple gain and loss events, and the molecular and functional characteristics of ocGBP suggest a role in innate immunity.
Collapse
Affiliation(s)
- Luca Schelle
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - João Vasco Côrte-Real
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Sharmeen Fayyaz
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- National Institute of Virology, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Augusto del Pozo Ben
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Margarita Shnipova
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Moritz Petersen
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Rishikesh Lotke
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Bhavna Menon
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Dana Matzek
- Biomedical Center (BMC), Core facility Animal Models (CAM), Faculty of Medicine, LMU München, Munich, Germany
| | - Lena Pfaff
- Biomedical Center (BMC), Core facility Animal Models (CAM), Faculty of Medicine, LMU München, Munich, Germany
| | - Ana Pinheiro
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - João Pedro Marques
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - José Melo-Ferreira
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Bastian Popper
- Biomedical Center (BMC), Core facility Animal Models (CAM), Faculty of Medicine, LMU München, Munich, Germany
| | - Pedro José Esteves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- CITS - Center of Investigation in Health Technologies, CESPU, Gandra, Portugal
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Joana Abrantes
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| |
Collapse
|
5
|
Zhang Z, Song W, Yan R. Gbp3 is associated with the progression of lupus nephritis by regulating cell proliferation, inflammation and pyroptosis. Autoimmunity 2023; 56:2250095. [PMID: 37621179 DOI: 10.1080/08916934.2023.2250095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/18/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Lupus nephritis (LN) is a major cause death in patients with systemic lupus erythematosus. We aimed to find the differentially expressed genes (DEGs) in LN and confirm the regulatory mechanism on LN. The mouse model of LN was constructed by subcutaneous injection of pristane. RNA-seq screened 392 up-regulated and 447 down-regulated DEGs in LN mouse model, and KEGG analysis found that the top 20 DEGs were enriched in arachidonic acid metabolism, tryptophan metabolism, etc. The hub genes, Kynu, Spidr, Gbp3, Cbr1, Cyp4b1, and Cndp2 were identified, in which Gbp3 was selected for following study. Afterwards, the function of Gbp3 on the proliferation, inflammation, and pyroptosis of LN was verified by CCK-8, ELISA, and WB in vitro. The results demonstrated that si-Gbp3 promoted cell proliferation and inhibited the levels of inflammatory factors (IL-1β, TNF-α and IL-8) and pyroptosis-related proteins (GSDMD, Caspase-1 and NLRP3) in a cell model of LN. In constrast, Gbp3 overexpression played an opposite role. In summary, Gbp3 promoted the progression of LN via inhibiting cell proliferation and facilitating inflammation and pyroptosis.
Collapse
Affiliation(s)
- Zhongfeng Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, P.R. China
| | - Wenyu Song
- Department of Nephrology, The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, P.R. China
| | - Run Yan
- Department of Nephrology, The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, P.R. China
| |
Collapse
|
6
|
Müller M, Sauter D. The more the merrier? Gene duplications in the coevolution of primate lentiviruses with their hosts. Curr Opin Virol 2023; 62:101350. [PMID: 37651832 DOI: 10.1016/j.coviro.2023.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 09/02/2023]
Abstract
Gene duplications are a major source of genetic diversity and evolutionary innovation. Newly formed, duplicated genes can provide a selection advantage in constantly changing environments. One such example is the arms race of HIV and related lentiviruses with innate immune responses of their hosts. In recent years, it has become clear that both sides have benefited from multiple gene duplications. For example, amplifications of antiretroviral factors such as apolipoprotein-B mRNA-editing enzyme catalytic polypeptide-3 (APOBEC3), interferon-induced transmembrane protein (IFITM), and tripartite motif-containing (TRIM) proteins have expanded the repertoire of cell-intrinsic defense mechanisms and increased the barriers to retroviral replication and cross-species transmission. Conversely, recent studies have also shed light on how duplications of accessory lentiviral genes and Long terminal repeat (LTR) elements can provide a selection advantage in the coevolution with antiviral host proteins.
Collapse
Affiliation(s)
- Martin Müller
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Elfriede-Aulhorn-Straße 6, 72076 Tübingen, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Elfriede-Aulhorn-Straße 6, 72076 Tübingen, Germany.
| |
Collapse
|
7
|
Schelle L, Côrte-Real JV, Esteves PJ, Abrantes J, Baldauf HM. Functional cross-species conservation of guanylate-binding proteins in innate immunity. Med Microbiol Immunol 2023; 212:141-152. [PMID: 35416510 PMCID: PMC9005921 DOI: 10.1007/s00430-022-00736-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
Guanylate binding proteins (GBPs) represent an evolutionary ancient protein family widely distributed among eukaryotes. They are interferon (IFN)-inducible guanosine triphosphatases that belong to the dynamin superfamily. GBPs are known to have a major role in the cell-autonomous innate immune response against bacterial, parasitic and viral infections and are also involved in inflammasome activation. Evolutionary studies depicted that GBPs present a pattern of gain and loss of genes in each family with several genes pseudogenized and some genes more divergent, indicative for the birth-and-death evolution process. Most species harbor large GBP gene clusters encoding multiple paralogs. Previous functional studies mainly focused on mouse and human GBPs, but more data are becoming available, broadening the understanding of this multifunctional protein family. In this review, we will provide new insights and give a broad overview about GBP evolution, conservation and their roles in all studied species, including plants, invertebrates and vertebrates, revealing how far the described features of GBPs can be transferred to other species.
Collapse
Affiliation(s)
- Luca Schelle
- Faculty of Medicine, Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - João Vasco Côrte-Real
- Faculty of Medicine, Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Pedro José Esteves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- CITS-Center of Investigation in Health Technologies, CESPU, 4585-116, Gandra, Portugal
| | - Joana Abrantes
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Hanna-Mari Baldauf
- Faculty of Medicine, Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany.
| |
Collapse
|
8
|
Jiang T, Jin P, Huang G, Li SC. The function of guanylate binding protein 3 (GBP3) in human cancers by pan-cancer bioinformatics. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:9511-9529. [PMID: 37161254 DOI: 10.3934/mbe.2023418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As a guanylate binding protein (GBPs) member, GBP3 is immune-associated and may participate in oncogenesis and cancer therapy. Since little has been reported on GBP3 in this field, we provide pan-cancer bioinformatics to investigate the role of GBP3 in human cancers. The GBP3 expression, related clinical outcomes, immune infiltrates, potential mechanisms and mutations were conducted using tools including TIMER2.0, GEPIA2.0, SRING, DAVID and cBioPortal. Results showed an increased risk of high GBP3 in Brain Lower Grade Glioma (LGG) and Lung Squamous Cell Carcinoma (LUSC) and a decreased risk of GBP3 in Sarcoma (SARC) and Skin Cutaneous Melanoma (SKCM) (p ≤ 0.05). GBP3 was negatively correlated with CAFs in Esophageal Adenocarcinoma (ESCA) and positively correlated with CAFs in LGG, LUSC and TGCG (p ≤ 0.05). In addition, GBP3 was positively correlated with CD8+ T cells in Bladder Urothelial Carcinoma (BLCA), Cervical Squamous Cell Carcinoma (CESC), Kidney Renal Clear Cell Carcinoma (KIRC), SARC, SKCM, SKCM-Metastasis and Uveal Melanoma (UVM) (p ≤ 0.05). Potentially, GBP3 may participate in the homeostasis between immune and adaptive immunity in cancers. Moreover, the most frequent mutation sites of GBP3 in cancers are R151Q/* and K380N. This study would provide new insight into cancer prognosis and therapy.
Collapse
Affiliation(s)
- Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Pan Jin
- Health Science Center, Yangtze University, Jingzhou 434023, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Guoxiu Huang
- Health Management Center, The People's Hospital of Guangxi Zhuang Autonomous Region; Guangxi Health Examination Center, Nanning 530021, China
| | - Shi-Cheng Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region; Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning 530021, China
| |
Collapse
|
9
|
Valeva SV, Degabriel M, Michal F, Gay G, Rohde JR, Randow F, Lagrange B, Henry T. Comparative study of GBP recruitment on two cytosol-dwelling pathogens, Francisella novicida and Shigella flexneri highlights differences in GBP repertoire and in GBP1 motif requirements. Pathog Dis 2023; 81:ftad005. [PMID: 37012222 DOI: 10.1093/femspd/ftad005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Guanylate-Binding Proteins are interferon-inducible GTPases that play a key role in cell autonomous responses against intracellular pathogens. Despite sharing high sequence similarity, subtle differences among GBPs translate into functional divergences that are still largely not understood. A key GBP feature is the formation of supramolecular GBP complexes on the bacterial surface. Such complexes are observed when GBP1 binds lipopolysaccharide (LPS) from Shigella and Salmonella and further recruits GBP2-4. Here, we compared GBP recruitment on two cytosol-dwelling pathogens, Francisella novicida and S. flexneri. Francisella novicida was coated by GBP1 and GBP2 and to a lower extent by GBP4 in human macrophages. Contrary to S. flexneri, F. novicida was not targeted by GBP3, a feature independent of T6SS effectors. Multiple GBP1 features were required to promote targeting to F. novicida while GBP1 targeting to S. flexneri was much more permissive to GBP1 mutagenesis suggesting that GBP1 has multiple domains that cooperate to recognize F. novicida atypical LPS. Altogether our results indicate that the repertoire of GBPs recruited onto specific bacteria is dictated by GBP-specific features and by specific bacterial factors that remain to be identified.
Collapse
Affiliation(s)
- Stanimira V Valeva
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Manon Degabriel
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Fanny Michal
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Gabrielle Gay
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007, Lyon, France
| | - John R Rohde
- Department of Microbiology and Immunology, Dalhousie University, Halifax, B3H 4R2, NS, Canada
| | - Felix Randow
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, CB2 0QH, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, CB2 0QH, Cambridge, United Kingdom
| | - Brice Lagrange
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007, Lyon, France
| |
Collapse
|
10
|
Côrte-Real JV, Baldauf HM, Melo-Ferreira J, Abrantes J, Esteves PJ. Evolution of Guanylate Binding Protein ( GBP) Genes in Muroid Rodents (Muridae and Cricetidae) Reveals an Outstanding Pattern of Gain and Loss. Front Immunol 2022; 13:752186. [PMID: 35222365 PMCID: PMC8863968 DOI: 10.3389/fimmu.2022.752186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/20/2022] [Indexed: 01/05/2023] Open
Abstract
Guanylate binding proteins (GBPs) are paramount in the host immunity by providing defense against invading pathogens. Multigene families related to the immune system usually show that the duplicated genes can either undergo deletion, gain new functions, or become non-functional. Here, we show that in muroids, the Gbp genes followed an unusual pattern of gain and loss of genes. Muroids present a high diversity and plasticity regarding Gbp synteny, with most species presenting two Gbp gene clusters. The phylogenetic analyses revealed seven different Gbps groups. Three of them clustered with GBP2, GBP5 and GBP6 of primates. Four new Gbp genes that appear to be exclusive to muroids were identified as Gbpa, b, c and d. A duplication event occurred in the Gbpa group in the common ancestor of Muridae and Cricetidae (~20 Mya), but both copies were deleted from the genome of Mus musculus, M. caroli and Cricetulus griseus. The Gbpb gene emerged in the ancestor of Muridae and Cricetidae and evolved independently originating Gbpb1 in Muridae, Gbpb2 and Gbpb3 in Cricetidae. Since Gbpc appears only in three species, we hypothesize that it was present in the common ancestor and deleted from most muroid genomes. The second Gbp gene cluster, Gbp6, is widespread across all muroids, indicating that this cluster emerged before the Muridae and Cricetidae radiation. An expansion of Gbp6 occurred in M. musculus and M. caroli probably to compensate the loss of Gbpa and b. Gbpd is divided in three groups and is present in most muroids suggesting that a duplication event occurred in the common ancestor of Muridae and Cricetidae. However, in Grammomys surdaster and Mus caroli, Gbpd2 is absent, and in Arvicanthis niloticus, Gbpd1 appears to have been deleted. Our results further demonstrated that primate GBP1, GBP3 and GBP7 are absent from the genome of muroids and showed that the Gbp gene annotations in muroids were incorrect. We propose a new classification based on the phylogenetic analyses and the divergence between the groups. Extrapolations to humans based on functional studies of muroid Gbps should be re-evaluated. The evolutionary analyses of muroid Gbp genes provided new insights about the evolution and function of these genes.
Collapse
Affiliation(s)
- João Vasco Côrte-Real
- Research Center in Biodiversity and Genetic Resources (CIBIO-InBIO), University of Porto, Vairão, Portugal.,Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU) München, Munich, Germany.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Research Center in Biodiversity and Genetic Resources (CIBIO), Vairão, Portugal
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU) München, Munich, Germany
| | - José Melo-Ferreira
- Research Center in Biodiversity and Genetic Resources (CIBIO-InBIO), University of Porto, Vairão, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Research Center in Biodiversity and Genetic Resources (CIBIO), Vairão, Portugal
| | - Joana Abrantes
- Research Center in Biodiversity and Genetic Resources (CIBIO-InBIO), University of Porto, Vairão, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Research Center in Biodiversity and Genetic Resources (CIBIO), Vairão, Portugal
| | - Pedro José Esteves
- Research Center in Biodiversity and Genetic Resources (CIBIO-InBIO), University of Porto, Vairão, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Research Center in Biodiversity and Genetic Resources (CIBIO), Vairão, Portugal.,Center of Investigation in Health Technologies (CITS), CESPU, Gandra, Portugal
| |
Collapse
|