1
|
Yu Y, Zhang H, Yang F, Liu H. Integrated pharmacoanalysis, bioinformatics analysis, and experimental validation to identify the ingredients and mechanisms of Xiao-Luo-Wan in uterine fibroids treatment. PHARMACEUTICAL BIOLOGY 2025; 63:201-217. [PMID: 40219728 PMCID: PMC11999358 DOI: 10.1080/13880209.2025.2485905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
CONTEXT Xiao-Luo-Wan (XLW), a classical prescription in traditional Chinese medicine, has therapeutic effects on uterine fibroids (UFs). Herein, its anti-UF effects were examined using a systematic pharmacological method. OBJECTIVE To explore the active ingredients of XLW via mass spectrometry and its potential effects on UFs by network pharmacology, molecular docking, and experimental validation. MATERIALS AND METHODS A mass spectrometer was used to scrutinize the composition of the XLW drug-containing serum. The critical targets and potential mechanisms of XLW against UFs were predicted by network pharmacology and molecular docking. Next, human uterine leiomyoma cells (UMCs) were treated with 20%, 30%, or 40% XLW serum for 24 h, 48 h or 72 h. Cell viability was analyzed via a CCK-8 assay, and cell apoptosis and the cell cycle were examined via flow cytometry. The predicted targets were further identified by RT-PCR and western blotting. RESULTS There were 16 chemical components identified in XLW drug-containing serum, with 53 target genes predicated in the treatment of UFs. The molecular binding of core targets, including TRIM9, NF-κB and p38MAPK, was relatively stable to components, especially buergerinin B, cedrol and ent-15B-16-epoxy- kauan-17-ol. The in vitro experiments revealed that the IC50 of XLW in UMCs was 63.21%, and the anti-UF effects of XLW may be closely associated with targets that inhibit cell proliferation and promote cell apoptosis by regulating TRIM9, NF-κB and p38MAPK expression. DISCUSSION AND CONCLUSIONS The integration of mass spectrometry, network pharmacology, molecular docking and biological experiments revealed the key constituents of XLW and its pharmacological mechanism in UFs, which may help in the discovery of therapeutic agents for treating UFs.
Collapse
Affiliation(s)
- Yonghui Yu
- Gynecological Department of Traditional Chinese Medicine, China–Japan Friendship Hospital, Beijing, China
| | - Haojun Zhang
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing, China
| | - Fang Yang
- Gynecological Department of Traditional Chinese Medicine, China–Japan Friendship Hospital, Beijing, China
| | - Hong Liu
- Gynecological Department of Traditional Chinese Medicine, China–Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Boyko AV, Dolmatov IY, Girich AS, Maslennikov SI. Some molecular aspects of larval development in Paralithodes camtschaticus. PLoS One 2025; 20:e0322234. [PMID: 40299921 PMCID: PMC12040194 DOI: 10.1371/journal.pone.0322234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/18/2025] [Indexed: 05/01/2025] Open
Abstract
The transcriptome of the red king crab, Paralithodes camtschaticus, was sequenced at four developmental stages: zoea I, zoea IV, glaucothoe, and juveniles. Based on our RNA-seq data and paired-end reads from 112 libraries obtained by other researchers earlier, the transcriptome assembly for P. camtschaticus that we obtained has proven to be the most complete of those reported to date. An analysis of enriched processes at different stages has shown, that some of adaptations, e.g., to elevated temperature and hypoxia, do not appear in early larvae. Thus, it is important to maintain optimal conditions for normal larval development and reduce mortality rates. According to the results of the expression profile clustering and transcription factor (TF) search, most TFs are associated with the development of various organs, metamorphosis, and immune responses. The data obtained provide an additional basis for deeper investigation into the mechanisms of the biphasic life cycle in decapods and can be helpful in commercial red king crab stock enhancement programs.
Collapse
Affiliation(s)
- Alexey V. Boyko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Yu. Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Alexander S. Girich
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Sergey I. Maslennikov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
3
|
Zhao C, Peng C, Wang P, Zhang B, Yan L, Wang CL, Qiu L. Molecular characterization and functional analysis of TRIM37 from black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108940. [PMID: 37442309 DOI: 10.1016/j.fsi.2023.108940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
The family of TRIM proteins with E3 ubiquitin ligase activity served important roles in the regulation of innate immune processes, in particular antiviral and proinflammatory cytokine responses. In this study, a novel TRIM37 homolog was identified from Penaeus monodon (named PmTRIM37). The PmTRIM37 protein contained three conserved domains (one RING finger domain, a B-box, and one Coiled-coil region) at its N-terminal and one Meprin and MATH domain at its C-terminal. The MATH domain was the characteristic of TRIM37 family. PmTRIM37 has relatively high expression in immune-related tissues such as hepatopancreas, gills, lymphoid organs and hemocytes. The expression levels of PmTRIM37 in hepatopancreas and lymphoid organs were significantly up-regulated after white spot syndrome virus (WSSV) infection. Knock down of PmTRIM37 promoted WSSV replication and VP28 expression, suggesting that PmTRIM37 played a negative role in WSSV infection. Further studies revealed that PmTRIM37 positively regulated the NF-κB pathway and Antimicrobial peptides (AMP) expression during WSSV infection. These findings indicated that PmTRIM37 might restrict WSSV replication by positively regulating NF-κB pathway during WSSV infection in P. monodon.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, China
| | - Chao Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Chun-Lin Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Si MR, Li YD, Jiang SG, Yang QB, Jiang S, Yang LS, Huang JH, Chen X, Zhou FL. Identification of multifunctionality of the PmE74 gene and development of SNPs associated with low salt tolerance in Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2022; 128:7-18. [PMID: 35843525 DOI: 10.1016/j.fsi.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Members of the E74-like factor (ELF) subfamily are involved in the immune stress process of organisms by regulating immune responses and the development of immune-related cells. PmE74 of Penaeus monodon was characterized and functionally analyzed in this study. The full length of PmE74 was 3106 bp, with a 5'-UTR of 297 bp, and a 3'-UTR of 460 bp. The ORF (Open reading frame) was 2349 bp and encoded 782 amino acids. Domain analysis showed that PmE74 contains a typical Ets domain. Multiple sequence alignment and phylogenetic tree analysis showed that PmE74 clustered with Litopenaeus vannamei E74 and displayed significant similarity (98.98%). PmE74 was expressed in all tissues tested in P. monodon, with the highest levels of expression observed in the testis, intestine, and epidermis. Different pathogen stimulation studies have revealed that PmE74 expression varies in response to different pathogen stimuli. A 96-h acute low salt stress study revealed that PmE74 in the hepatopancreas was upregulated and downregulated in the salinity 17 group and considerably downregulated in the salinity 3 group, whereas PmE74 in gill tissue was considerably downregulated in both groups. Further, by knocking down PmE74 and learning the trends of its linkage genes PmAQP1, PmNKA, PmE75, PmFtz-f1, PmEcR, and PmRXR in response to low salt stress, it was further indicated that PmE74 could have a vital role in the regulation of low salt stress. The SNP test revealed that PmE74-In1-53 was significantly associated with low salt tolerance traits in P. monodon (P < 0.05). The findings of this study can aid in the advancement of molecular marker-assisted breeding in P. monodon, as well as provide fundamental data and methodologies for further investigation of its low salt tolerance strains in P. monodon.
Collapse
Affiliation(s)
- Meng-Ru Si
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yun-Dong Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; Tropical Fishery Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China.
| | - Shi-Gui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; Tropical Fishery Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China.
| | - Qi-Bin Yang
- Tropical Fishery Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China.
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China.
| | - Li-Shi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China.
| | - Jian-Hua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China.
| | - Xu Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China.
| | - Fa-Lin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; Tropical Fishery Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China.
| |
Collapse
|
5
|
Sun M, Li S, Jin S, Li X, Xiang J, Li F. A Novel TRIM9 Protein Promotes NF-κB Activation Through Interacting With LvIMD in Shrimp During WSSV Infection. Front Immunol 2022; 13:819881. [PMID: 35281067 PMCID: PMC8904877 DOI: 10.3389/fimmu.2022.819881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
The TRIpartite Motif (TRIM) proteins play key roles in cell differentiation, apoptosis, development, autophagy, and innate immunity in vertebrates. In the present study, a novel TRIM9 homolog (designated as LvTRIM9-1) specifically expressed in the lymphoid organ of shrimp was identified from the Pacific whiteleg shrimp Litopenaeus vannamei. Its deduced amino acid sequence possesses the typical features of TRIM proteins, including a RING domain, two B-boxes, a coiled-coil domain, a FN3 domain, and a SPRY domain. The transcripts of LvTRIM9-1 were mainly located in the lymphoid tubules of the lymphoid organ. Knockdown of LvTRIM9-1 could apparently inhibit the transcriptions of some genes from white spot syndrome virus (WSSV) and reduce the viral propagation in the lymphoid organ. Overexpression of LvTRIM9-1 in mammalian cells could activate the promoter activity of NF-κB, and an in vivo experiment in shrimp showed that knockdown of LvTRIM9-1 reduced the expression of LvRelish in the lymphoid organ. Yeast two-hybridization and co-immunoprecipitation (Co-IP) assays confirmed that LvTRIM9-1 could directly interact with LvIMD, a key component of the IMD pathway, through its SPRY domain. These data suggest that LvTRIM9-1 could activate the IMD pathway in shrimp via interaction with LvIMD. This is the first evidence to show the regulation of a TRIM9 protein on the IMD pathway through its direct interaction with IMD, which will enrich our knowledge on the role of TRIM proteins in innate immunity of invertebrates.
Collapse
Affiliation(s)
- Mingzhe Sun
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Songjun Jin
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xuechun Li
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhai Xiang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|