1
|
Hou X, Li Q. Medulla oblongata and NCCs are central defenders against Streptococcus agalactiae infection of the tilapia brain. Front Immunol 2024; 15:1442906. [PMID: 39011038 PMCID: PMC11246860 DOI: 10.3389/fimmu.2024.1442906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Various types of professional immune cells first emerge in fish and likely represent the primordial form and functions. Recent advancements revealed the direct connection between the central nervous system and the immune system in the mammalian brain. However, the specifics of brain-immune networks in the fish and the underlying mechanisms of teleost's brain against pathogen infection have not been fully elucidated. In this study, we investigated the distribution of markers representing cerebral cells associated with protection and professional lymphocytes in the seven major components of the Nile tilapia brain through RNA-Seq assay and observed the most dominant abundance in the medulla oblongata. The subsequent challenge test revealed the non-specific cytotoxic cells (NCCs) exhibited the strongest response against streptococcal infection of the brain. The presence of NCCs in the brain was then confirmed using immunofluorescence and the cytotoxic effects usually induced by NCCs under infection were determined as well. Collectively, these findings contribute significantly to comprehending the mechanism of fish neuroimmune interaction and enhancing our understanding of its evolutionary development.
Collapse
Affiliation(s)
- Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
2
|
Esteban MÁ. A review of soluble factors and receptors involved in fish skin immunity: The tip of the iceberg. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109311. [PMID: 38128682 DOI: 10.1016/j.fsi.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The immune system of fish possesses soluble factors, receptors, pathways and cells very similar to those of the other vertebrates' immune system. Throughout evolutionary history, the exocrine secretions of organisms have accumulated a large reservoir of soluble factors that serve to protect organisms from microbial pathogens that could disrupt mucosal barrier homeostasis. In parallel, a diverse set of recognition molecules have been discovered that alert the organism to the presence of pathogens. The known functions of both the soluble factors and receptors mentioned above encompass critical aspects of host defense, such as pathogen binding and neutralization, opsonization, or modulation of inflammation if present. The molecules and receptors cooperate and are able to initiate the most appropriate immune response in an attempt to eliminate pathogens before host infection can begin. Furthermore, these recognition molecules, working in coordination with soluble defence factors, collaboratively erect a robust and perfectly coordinated defence system with complementary specificity, activity and tissue distribution. This intricate network constitutes an immensely effective defence mechanism for fish. In this context, the present review focuses on some of the main soluble factors and recognition molecules studied in the last decade in the skin mucosa of teleost fish. However, knowledge of these molecules is still very limited in all teleosts. Therefore, further studies are suggested throughout the review that would help to better understand the functions in which the proteins studied are involved.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
3
|
Torrealba D, Morales-Lange B, Mulero V, Vasemägi A, Mercado L, Gallardo-Matus J. Heritability of Immunity Traits and Resistance of Atlantic Salmon against the Sea Louse Caligus rogercresseyi. BIOLOGY 2023; 12:1078. [PMID: 37626964 PMCID: PMC10452322 DOI: 10.3390/biology12081078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
The immune response of Atlantic salmon to sea lice has been extensively studied, but we still do not know the mechanisms by which some fish become resistant and others do not. In this study, we estimated the heritabilities of three key proteins associated with the innate immunity and resistance of Salmo salar against the sea louse Caligus rogercresseyi. In particular, we quantified the abundance of 2 pro-inflammatory cytokines, Tnfα and Il-8, and an antioxidant enzyme, Nkef, in Atlantic salmon skin and gill tissue from 21 families and 268 individuals by indirect ELISA. This covers a wide parasite load range from low or resistant (mean sea lice ± SE = 8.7 ± 0.9) to high or susceptible (mean sea lice ± SE = 43.3 ± 2.0). Our results showed that susceptible fish had higher levels of Nkef and Tnfα than resistant fish in their gills and skin, although gill Il-8 was higher in resistant fish, while no significant differences were found in the skin. Furthermore, moderate to very high heritable genetic variation was estimated for Nkef (h2 skin: 0.96 ± 0.14 and gills: 0.97 ± 0.11) and Tnfα (h2 skin: 0.53 ± 0.17 and gills: 0.32 ± 0.14), but not for Il-8 (h2 skin: 0.22 ± 0.12 ns and gills: 0.09 ± 0.08 ns). This work provides evidence that Nkef and Tnfα protein expressions are highly heritable and related to resistance against sea lice in Atlantic salmon.
Collapse
Affiliation(s)
- Débora Torrealba
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2373223, Chile;
| | - Byron Morales-Lange
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2373223, Chile; (B.M.-L.); (L.M.)
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, C. Campus Universitario, 5, 30100 Murcia, Spain;
| | - Anti Vasemägi
- Department of Aquatic Resources, Swedish University of Agricultural Sciences. Almas Allé 8, SE-750 07 Uppsala, Sweden;
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Friedrich Reinhold Kreutzwaldi 1a, 51014 Tartu, Estonia
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2373223, Chile; (B.M.-L.); (L.M.)
| | - José Gallardo-Matus
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2373223, Chile;
| |
Collapse
|
4
|
Song L, Soomro MA, Wang L, Song Y, Hu G. Identification and functional analysis of histone 1.2-like in red sea bream (Pagrus major). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104529. [PMID: 36087785 DOI: 10.1016/j.dci.2022.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Histone H1 acts as an essential chromatin component and participates in the formation of higher chromatin structures together with core histones. In addition, H1 also has important functions in physiological processes such as gene expression regulation, DNA repair, and the immune response. In this study, the histone homologous protein Pm-H1.2-like was identified from the transcriptome database of Pagrus major we studied previously. Conservatism of evolution was investigated by sequence alignment and phylogenetic analysis. Transcripts of Pm-H1.2-like were detected in P. major tissues. The highest expression level was found in gill and skin tissues. Consistent with the data from the transcriptome database, we observed that the expression of Pm-H1.2-like was rapidly induced in nonspecific cytotoxic cells (NCCs) infected with inactivated Vibrio anguillarum. Gene silencing of Pm-H1.2-like by RNAi significantly suppressed the expression of NK-lysin and GZMB in NCCs at 12 h after pathogen stimulation, but had no significant effect on IFN-γ expression. Next, we obtained the fusion proteins rPm-H1.2-like and rPm-H1.2-like (36-80) through prokaryotic expression. ELISA showed that rPm-H1.2-like bound to oligonucleotide (ODN) in a concentration-dependent manner, while no binding activity of rPm-H1.2-like (36-80) with ODN was observed. This study confirmed that Pm-H1.2-like actively participates in the immune response of NCCs to bacterial infection, deepening the understanding of the immune features of histone H1 in fish.
Collapse
Affiliation(s)
- Lianfei Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Maqsood Ahmed Soomro
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Lingshu Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yuting Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|