1
|
Hébert MPA, Selka A, Lebel AA, Doiron JA, Isabel Chiasson A, Gauvin VL, Matthew AJ, Hébert MJG, Doucet MS, Joy AP, Barnett DA, Touaibia M, Surette ME, Boudreau LH. Caffeic acid phenethyl ester analogues as selective inhibitors of 12-lipoxygenase product biosynthesis in human platelets. Int Immunopharmacol 2023; 121:110419. [PMID: 37295028 DOI: 10.1016/j.intimp.2023.110419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
The inflammatory response is an essential process for the host defence against pathogens. Lipid mediators are important in coordinating the pro-inflammatory and pro-resolution phases of the inflammatory process. However, unregulated production of these mediators has been associated with chronic inflammatory diseases such as arthritis, asthma, cardiovascular diseases, and several types of cancer. Therefore, it is not surprising that enzymes implicated in the production of these lipid mediators have been targeted for potential therapeutic approaches. Amongst these inflammatory molecules, the 12-hydroxyeicosatetraenoic acid (12(S)-HETE) is abundantly produced in several diseases and is primarily biosynthesized via the platelet's 12-lipoxygenase (12-LO) pathway. To this day, very few compounds selectively inhibit the 12-LO pathway, and most importantly, none are currently used in the clinical settings. In this study, we investigated a series of polyphenol analogues of natural polyphenols that inhibit the 12-LO pathway in human platelets without affecting other normal functions of the cell. Using an ex vivo approach, we found one compound that selectively inhibited the 12-LO pathway, with IC50 values as low as 0.11 µM, with minimal inhibition of other lipoxygenase or cyclooxygenase pathways. More importantly, our data show that none of the compounds tested induced significant off-target effects on either the platelet's activation or its viability. In the continuous search for specific and better inhibitors targeting the regulation of inflammation, we characterized two novel inhibitors of the 12-LO pathway that could be promising for subsequent in vivo studies.
Collapse
Affiliation(s)
- Mathieu P A Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Ayyoub Selka
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Andréa A Lebel
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Jérémie A Doiron
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Audrey Isabel Chiasson
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Vanessa L Gauvin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Alexis J Matthew
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Martin J G Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Marco S Doucet
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | - Andrew P Joy
- Atlantic Cancer Research Institute, Moncton, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - David A Barnett
- Atlantic Cancer Research Institute, Moncton, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada.
| | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada; New Brunswick Center for Precision Medicine, 27 Providence Street, Moncton, New Brunswick E1C 8X3, Canada.
| |
Collapse
|
2
|
Léger JL, Soucy MN, Veilleux V, Foulem RD, Robichaud GA, Surette ME, Allain EP, Boudreau LH. Functional platelet-derived mitochondria induce the release of human neutrophil microvesicles. EMBO Rep 2022; 23:e54910. [PMID: 36125343 PMCID: PMC9638873 DOI: 10.15252/embr.202254910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 09/19/2023] Open
Abstract
Inflammation is an essential process of host defense against infections, illness, or tissue damage. Polymorphonuclear neutrophils (PMN) are among the first immune cells involved in acute inflammatory responses and are on the front line in the fight against bacterial infections. In the presence of bacterial fragments, PMN release inflammatory mediators, enzymes, and microvesicles in the extracellular milieu to recruit additional immune cells required to eliminate the pathogens. Recent evidence shows that platelets (PLTs), initially described for their role in coagulation, are involved in inflammatory responses. Furthermore, upon activation, PLT also release functional mitochondria (freeMitos) within their extracellular milieu. Mitochondria share characteristics with bacterial and mitochondrial damage-associated molecular patterns, which are important contributors in sterile inflammation processes. Deep sequencing transcriptome analysis demonstrates that freeMitos increase the mitochondrial gene expression in PMN. However, freeMitos do not affect the mitochondrial-dependent increase in oxygen consumption in PMN. Interestingly, freeMitos significantly induce the release of PMN-derived microvesicles. This study provides new insight into the role of freeMitos in the context of sterile inflammation.
Collapse
Affiliation(s)
- Jacob L Léger
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
- New Brunswick Center for Precision MedicineMonctonNBCanada
| | - Marie‐France N Soucy
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
- New Brunswick Center for Precision MedicineMonctonNBCanada
| | - Vanessa Veilleux
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
- New Brunswick Center for Precision MedicineMonctonNBCanada
- Atlantic Cancer Research InstituteMonctonNBCanada
| | - Robert D Foulem
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
- New Brunswick Center for Precision MedicineMonctonNBCanada
| | - Gilles A Robichaud
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
- New Brunswick Center for Precision MedicineMonctonNBCanada
- Atlantic Cancer Research InstituteMonctonNBCanada
| | - Marc E Surette
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
- New Brunswick Center for Precision MedicineMonctonNBCanada
| | - Eric P Allain
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
- New Brunswick Center for Precision MedicineMonctonNBCanada
- Atlantic Cancer Research InstituteMonctonNBCanada
- Department of Clinical GeneticsVitalité Health Network, Dr. Georges‐L.‐Dumont University Hospital CentreMonctonNBCanada
| | - Luc H Boudreau
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
- New Brunswick Center for Precision MedicineMonctonNBCanada
| |
Collapse
|
3
|
Cormier SB, Léger A, Boudreau LH, Pichaud N. Overwintering in North American domesticated honeybees (Apis mellifera) causes mitochondrial reprogramming while enhancing cellular immunity. J Exp Biol 2022; 225:276355. [PMID: 35938391 DOI: 10.1242/jeb.244440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
Many factors negatively impact domesticated honeybee (Apis mellifera) health causing a global decrease in their population year after year with major losses occurring during winter, and the cause remains thus far unknown. Here, we monitored for 12 months North American colonies of honeybees enduring important temperature variations throughout the year, to assess the metabolism and immune system of honeybees of summer and winter individuals. Our results show that in flight muscle, mitochondrial respiration via complex I during winter is drastically reduced compared to summer. However, the capacity for succinate and glycerol-3-phosphate (G3P) oxidation by mitochondria is increased during winter, resulting in higher mitochondrial oxygen consumption when complex I substrates, succinate and G3P were assessed altogether. Pyruvate kinase, lactate dehydrogenase, aspartate aminotransferase, citrate synthase and malate dehydrogenase tend to have reduced activity levels in winter unlike hexokinase, NADH dehydrogenase and pyruvate dehydrogenase. Transcript abundance of highly important immunity proteins like Vitellogenin and Defensin-1 were also increased in winter bees, and a stronger phagocytic response as well as a better hemocyte viability was observed during winter. Thus, a reorganization of substrate utilization favoring succinate and G3P while negatively affecting complex I of the ETS is occurring during winter. We suggest that this might be due to complex I transitioning to a dormant conformation through post-translational modification. Winter bees also have an increased response for antibacterial elimination in honeybees. Overall, this study highlights previously unknown cellular mechanisms between summer and winter honeybees that further our knowledge about this important species.
Collapse
Affiliation(s)
- Simon B Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A3E9, Canada.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, E1C8X3, Canada
| | - Adèle Léger
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A3E9, Canada.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, E1C8X3, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A3E9, Canada.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, E1C8X3, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A3E9, Canada.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, E1C8X3, Canada
| |
Collapse
|