1
|
Deng J, Ding K, Liu S, Chen F, Huang R, Xu B, Zhang X, Xie W. SOX9 Overexpression Ameliorates Metabolic Dysfunction-associated Steatohepatitis Through Activation of the AMPK Pathway. J Clin Transl Hepatol 2025; 13:189-199. [PMID: 40078197 PMCID: PMC11894392 DOI: 10.14218/jcth.2024.00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 03/14/2025] Open
Abstract
Background and Aims The transcription factor sex-determining region Y-related high-mobility group-box gene 9 (SOX9) plays a critical role in organ development. Although SOX9 has been implicated in regulating lipid metabolism in vitro, its specific role in metabolic dysfunction-associated steatohepatitis (MASH) remains poorly understood. This study aimed to investigate the role of SOX9 in MASH pathogenesis and explored the underlying mechanisms. Methods MASH models were established using mice fed either a methionine- and choline-deficient (MCD) diet or a high-fat, high-fructose diet. To evaluate the effects of SOX9, hepatocyte-specific SOX9 deletion or overexpression was performed. Lipidomic analyses were conducted to assess how SOX9 influences hepatic lipid metabolism. RNA sequencing was employed to identify pathways modulated by SOX9 during MASH progression. To elucidate the mechanism further, HepG2 cells were treated with an adenosine monophosphate-activated protein kinase (AMPK) inhibitor to test whether SOX9 acts via AMPK activation. Results SOX9 expression was significantly elevated in hepatocytes of MASH mice. Hepatocyte-specific SOX9 deletion exacerbated MCD-induced MASH, whereas overexpression of SOX9 mitigated high-fat, high-fructose-induced MASH. Lipidomic and RNA sequencing analyses revealed that SOX9 suppresses the expression of genes associated with lipid metabolism, inflammation, and fibrosis in MCD-fed mice. Furthermore, SOX9 deletion inhibited AMPK pathway activation, while SOX9 overexpression enhanced it. Notably, administration of an AMPK inhibitor negated the protective effects of SOX9 overexpression, leading to increased lipid accumulation in HepG2 cells. Conclusions Our findings demonstrate that SOX9 overexpression alleviates hepatic lipid accumulation in MASH by activating the AMPK pathway. These results highlight SOX9 as a promising therapeutic target for treating MASH.
Collapse
Affiliation(s)
- Juan Deng
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kai Ding
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shuqing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fei Chen
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ru Huang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bonan Xu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weifen Xie
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
2
|
Chen Y, Guo W, Lu W, Guo X, Gao W, Yin Z. SNIP1 reduces extracellular matrix degradation and inflammation via inhibiting the NF-κB signaling pathway in osteoarthritis. Arch Biochem Biophys 2023; 747:109764. [PMID: 37739115 DOI: 10.1016/j.abb.2023.109764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Osteoarthritis (OA), the most common joint disease, is characterized by inflammation and cartilage degradation. Previous studies illustrated that Smad nuclear-interacting protein 1 (SNIP1) is an inhibitor of the TGF-β signal transduction pathway and SNIP1 has been reported as an anti-inflammatory factor. This study aimed to explore the role of SNIP1 in OA progression. In this study, the SNIP1 expression was evaluated in OA human and OA mice tissue and interleukin-1 beta (IL-1β)-induced chondrocytes. The Safranin-O (SO) staining and osteoarthritis research society international (OARSI) scoring system was used to evaluate cartilage injury. The gain- and loss-of-function studies for SNIP1 were performed in chondrocytes. The SNIP1 overexpression adenovirus was injected into mice by intra-articular injection. The SNIP1 expression was decreased in OA patients, OA mice, and IL-1β-stimulated chondrocytes. The cartilage injury of medial meniscus-induced OA (DMM-OA) mice at 8 weeks showed more severe than that at 4 weeks. The expression of SNIP1 was lower at 8 weeks than that at 4 weeks. In IL-1β-stimulated chondrocytes, SNIP1 overexpression reduced the expression of TNF-α and IL-6, alleviated ECM degradation, reduced the phosphorylation levels of p65 and IκBα, and decreased the p65 level in nuclear. Moreover, overexpression of SNIP1 alleviated cartilage injury in DMM-OA mice. In brief, our study suggested that SNIP1 alleviated OA and repressed inflammation by inhibiting the activation of NF-κB. This study might provide a new insight into OA treatment.
Collapse
Affiliation(s)
- Yinzhong Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Wei Guo
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Weizhao Lu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiucheng Guo
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Weilu Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Huang AF, Xu WD. Association of dipeptidylpeptidase 4 (CD26) with chondrocyte senescence and radiographic progression in knee osteoarthritis: comment on the article by Chen et al. Arthritis Rheumatol 2023; 75:1678-1679. [PMID: 36897805 DOI: 10.1002/art.42490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Affiliation(s)
- An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Sichuan, China
| |
Collapse
|
4
|
Zhu Z, Meng W, Liu S. The Effect of Metformin on the Differentiation of Bone Marrow Mesenchymal Stem Cells into Chondrocytes with a Hypertrophic Phenotype. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: To investigate the effect of metformin on the differentiation of Bone Marrow Mesenchymal Stem Cells into chondrocytes with a hypertrophic phenotype and related mechanisms. Methods: BMSCs were induced to differentiate into cartilage in vitro. The mRNA
expression of chondrocyte markers and hypertrophic markers was analyzed. BMSCs were induced in vitro with metformincontaining and metformin-free chondrogenic medium, and Col2, SOX9, Runx2, and Col10 mRNA expression and AMPK protein expression in the metformin group and the control group
were analyzed. Results: BMSCs were positive after induction into chondrocytes. The mRNA expression of Col2 and SOX9 was significantly increased on day 7. The mRNA expression of Runx2 and Col10 was significantly elevated at 14 days. Treatment with metformin at a concentration of 10 mM
significantly reduced the cell viability of BMSCs. Significantly more Col2 and SOX9 mRNA expression was present in the experimental group than in the control group, whereas Runx2 and Col10 mRNA levels were significantly lower. In addition, AMPK protein expression significantly improved when
compared to the control group. Conclusion: Metformin inhibits the differentiation of BMSCs into chondrocytes with a hypertrophic phenotype; metformin activates AMPK during inhibition of the differentiation of BMSCs into chondrocytes with a hypertrophic phenotype.
Collapse
Affiliation(s)
- Zhehui Zhu
- Shaanxi Provincial People’s Hospital, Xi’an, 710068, Shaanxi, China
| | - Weidong Meng
- Shaanxi Provincial People’s Hospital, Xi’an, 710068, Shaanxi, China
| | - Shizhang Liu
- Shaanxi Provincial People’s Hospital, Xi’an, 710068, Shaanxi, China
| |
Collapse
|
5
|
Wan C, Liu W, Jiang L, Dong S, Ma W, Wang S, Liu D. Knockdown of MKL1 ameliorates oxidative stress-induced chondrocyte apoptosis and cartilage matrix degeneration by activating TWIST1-mediated PI3K/AKT signaling pathway in rats. Autoimmunity 2022; 55:559-566. [PMID: 36046946 DOI: 10.1080/08916934.2022.2114466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Studies have reported that megakaryocytic leukemia 1 (MKL1) is closely related to the pathological process of a variety of inflammatory diseases, but its role in osteoarthritis (OA) needs to be clarified. This study aimed to investigate the regulatory role of MKL1 in oxidative stress-induced chondrocyte apoptosis and cartilage matrix degeneration. The expressions of target mRNAs and proteins were measured by using reverse transcription-quantitative polymerase chain reaction and western blotting. ELISA assay was used to measure the levels of IL-6, IL-8, and TNF-α in chondrocytes. And commercial kits based on different spectrophotometry or colorimetry methods were performed to validate oxidative stress. CCK-8 and apoptosis kits were used to determine cell viability and apoptosis. Rat OA model was established by anterior cruciate ligament transection (ACLT), and the expression of MKL1 was interfered by injecting sh-MKL1 lentiviral vector into caudal vein. The results showed that the expression of MKL1was induced by H2O2 in chondrocytes. Knockdown of MKL1 alleviated H2O2-induced inflammation and cell apoptosis, reduced H2O2-induced oxidative stress, and improved cartilage matrix degeneration of chondrocytes. Besides, inhibition of MKL1 regulated the activation of TWIST1-mediated PI3K/AKT signaling. Further studies have found that TWIST1-mediated PI3K/AKT signaling was involved in the regulation mechanism of MKL1 on chondrocyte apoptosis and cartilage matrix degeneration. Next, intervention with MKL1 inhibited the progression of OA in rats. These results demonstrated that MKL1 regulate the apoptosis and cartilage matrix degeneration of chondrocytes via TWIST1-mediated PI3K/AKT signaling.
Collapse
Affiliation(s)
- Chao Wan
- Department of the Joint and Bone Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical University, Binzhou, Shandong, China
| | - Limin Jiang
- Department of the Joint and Bone Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Shengjie Dong
- Department of the Joint and Bone Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Weihua Ma
- Department of the Joint and Bone Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Shijun Wang
- Department of the Joint and Bone Surgery, Yantaishan Hospital, Yantai, Shandong, China
| | - Dan Liu
- Department of the Joint and Bone Surgery, Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
6
|
Expression of TNF-α and IL-1β in Peripheral Blood of Patients with T2DM Retinopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9073372. [PMID: 35979044 PMCID: PMC9377956 DOI: 10.1155/2022/9073372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 12/06/2022]
Abstract
Aims The expression and clinical significance of tumor necrosis factor-α (INF-α) and interleukin 1-β (IL-1β) in retinal cells of patients with type 2 diabetes (T2DM) retinopathy were detected by flow cytometry. Materials and Methods Fifty patients with T2DM who attended our ophthalmology clinic between May 2021 and May 2022 were selected as the observation group. Another 50 healthy individuals who were examined at our hospital during the same period were selected as the comparison group. Tear film rupture time (BUT), fluorescein staining (FL), basal tear secretion (Schirmer I) test, and conjunctival impression cytology (CIC) were detected in both groups, and the expression of TNF-α and IL-1β in retinal cells was observed by immunohistochemical staining. Results The levels of IL13 and TNF-α in the two groups were not exactly the same. The serum levels of IL13 and TNF-α in the observation group were significantly higher than those in the control group, and there was a statistically significant difference (P < 0.05). TNF-α and IL-1B expressions in the observation group were positively correlated with the fluorescence staining, and the expression of TNF-α and IL-1β in the observation group was significantly negatively correlated with the BUT test and Schirmer I test. Conclusion Serums TNF-α and IL-1β are significantly elevated in patients with T2DM retinopathy and gradually increase with disease progression. Combined detection of serums TNF-α and IL-1β can help determine the severity of the disease and assess the prognosis.
Collapse
|
7
|
Zheng L, Han Z, Luo D, Li J, Ye H, Feng R, Zhong Q, Jing J, Yao Y. FGF23 and SOX9 expression in hemophilic cartilage: In vitro studies of the effects of iron. Haemophilia 2022; 28:1062-1068. [PMID: 35802007 DOI: 10.1111/hae.14623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/07/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Clarifying the links between iron and FGF23, SOX9 expression in chondrocytes would be helpful for comprehending articular cartilage degradation pathogenesis in blood-induced arthritis and exploring new protective methods. AIM The purpose of this study was to determine iron regulation of fibroblast growth factor 23 (FGF23) and SRY-box 9 (SOX9) in human chondrocytes, an area which is unexplored in blood-induced arthritis cartilage degradation pathogenesis. METHODS Expression of FGF23, SOX9, MMP13 and collagen Ⅱ in articular cartilage of patients with osteoarthritis (OA) or haemophilic arthritis (HA) was determined by western blot (WB). Iron induced FGF23 and SOX9 mRNA and protein expression in primary human normal chondrocyte cells (HUM-iCell-s018) was quantifified by qRT-PCR and WB, respectively. RESULTS We found that compared with OA patients, the expression of FGF23, MMP13 in articular cartilage of patients with HA was up-regulated, while the expression of SOX9, collagen Ⅱ was down-regulated. Iron induced FGF23 and suppressed SOX9 expression in chondrocytes in a dose-dependent manner. CONCLUSIONS These findings demonstrated that iron were involved in hemophilic cartilage lesion directly via changing cartilage phenotype through regulation of FGF23 and SOX9 expression in chondrocytes.
Collapse
Affiliation(s)
- Liujie Zheng
- Department of Orthopaedic Surgery, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhiwei Han
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Dasheng Luo
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiale Li
- Department of Orthopaedic Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, People's Republic of China
| | - Houlong Ye
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ru Feng
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Qigang Zhong
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Juehua Jing
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yunfeng Yao
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
8
|
The Role of Mitochondrial Metabolism, AMPK-SIRT Mediated Pathway, LncRNA and MicroRNA in Osteoarthritis. Biomedicines 2022; 10:biomedicines10071477. [PMID: 35884782 PMCID: PMC9312479 DOI: 10.3390/biomedicines10071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease characterized by degeneration of articular cartilage and causes severe joint pain, physical disability, and impaired quality of life. Recently, it was found that mitochondria not only act as a powerhouse of cells that provide energy for cellular metabolism, but are also involved in crucial pathways responsible for maintaining chondrocyte physiology. Therefore, a growing amount of evidence emphasizes that impairment of mitochondrial function is associated with OA pathogenesis; however, the exact mechanism is not well known. Moreover, the AMP-activated protein kinase (AMPK)–Sirtuin (SIRT) signaling pathway, long non-coding RNA (lncRNA), and microRNA (miRNA) are important for regulating the physiological and pathological processes of chondrocytes, indicating that these may be targets for OA treatment. In this review, we first focus on the importance of mitochondria metabolic dysregulation related to OA. Then, we show recent evidence on the AMPK-SIRT mediated pathway associated with OA pathogenesis and potential treatment options. Finally, we discuss current research into the effects of lncRNA and miRNA on OA progression or inhibition.
Collapse
|
9
|
Shang J, Li H, Wu B, Jiang N, Wang B, Wang D, Zhong J, Chen Y, Xu X, Lu H. CircHIPK3 prevents chondrocyte apoptosis and cartilage degradation by sponging miR-30a-3p and promoting PON2. Cell Prolif 2022; 55:e13285. [PMID: 35716032 PMCID: PMC9436899 DOI: 10.1111/cpr.13285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is a common joint disease featured by the deterioration of articular cartilage and chondrocyte death. Emerging evidence has indicated that circular RNAs (circRNAs) play an essential role in OA progress. Here, we found that the expression of circHIPK3 was significantly decreased in human and mouse OA cartilage. Knocking down circHIPK3 increased apoptosis and intracellular ROS level in HC‐a chondrocytes. We performed proteomic studies and identified that circHIPK3 regulated chondrocyte apoptosis through the mitochondrial pathway. Results of JC‐1 staining and western blot further confirmed that mitochondrial outer membrane permeabilization was promoted in HC‐a chondrocytes transfected by circHIPK3 siRNA. In terms of mechanism, we showed that PON2 functioned as a potential target of circHIPK3 to regulate chondrocyte apoptosis. Moreover, we revealed that circHIPK3 interacted with miR‐30a‐3p to regulate PON2 expression in chondrocytes. Taken together, our findings suggested that circHIPK3 regulated chondrocyte apoptosis by mitochondrial pathway, and targeting the circHIPK3/miR‐30a‐3p/PON2 axis might be a potential strategy for OA treatment.
Collapse
Affiliation(s)
- Jie Shang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huizi Li
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Wu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ning Jiang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Bin Wang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dawei Wang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Junlong Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yufeng Chen
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xianghe Xu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huading Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
10
|
Cheng K, Guo Q, Yang W, Wang Y, Sun Z, Wu H. Mapping Knowledge Landscapes and Emerging Trends of the Links Between Bone Metabolism and Diabetes Mellitus: A Bibliometric Analysis From 2000 to 2021. Front Public Health 2022; 10:918483. [PMID: 35719662 PMCID: PMC9204186 DOI: 10.3389/fpubh.2022.918483] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
BackgroundDiabetes mellitus (DM) have become seriously threatens to human health and life quality worldwide. As a systemic metabolic disease, multiple studies have revealed that DM is related to metabolic bone diseases and always induces higher risk of fracture. In view of this, the links between bone metabolism (BM) and DM (BMDM) have gained much attention and numerous related papers have been published. Nevertheless, no prior studies have yet been performed to analyze the field of BMDM research through bibliometric approach. To fill this knowledge gap, we performed a comprehensive bibliometric analysis of the global scientific publications in this field.MethodsArticles and reviews regarding BMDM published between 2000 and 2021 were obtained from the Web of Science after manually screening. VOSviewer 1.6.16, CiteSpace V 5.8.R3, Bibliometrix, and two online analysis platforms were used to conduct the bibliometric and visualization analyses.ResultsA total of 2,525 documents including 2,255 articles and 270 reviews were retrieved. Our analysis demonstrated a steady increasing trend in the number of publications over the past 22 years (R2 = 0.989). The United States has occupied the leading position with the largest outputs and highest H-index. University of California San Francisco contributed the most publications, and Schwartz AV was the most influential author. Collaboration among institutions from different countries was relatively few. The journals that published the most BMDM-related papers were Bone and Osteoporosis International. Osteoporosis and related fractures are the main bone metabolic diseases of greatest concern in this field. According to co-cited references result, “high glucose environment,” “glycation end-product” and “sodium-glucose co-transporter” have been recognized as the current research focus in this domain. The keywords co-occurrence analysis indicated that “diabetic osteoporosis,” “osteoarthritis,” “fracture risk,” “meta-analysis,” “osteogenic differentiation,” “bone regeneration,” “osteogenesis,” and “trabecular bone score” might remain the research hotspots and frontiers in the near future.ConclusionAs a cross-discipline research field, the links between bone metabolism and diabetes mellitus are attracting increased attention. Osteoporosis and related fractures are the main bone metabolic diseases of greatest concern in this field. These insights may be helpful for clinicians to recognize diabetic osteopenia and provide more attention and support to such patients.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Kunming Cheng
| | - Qiang Guo
- Department of Orthopaedic Surgery, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Weiguang Yang
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- *Correspondence: Zaijie Sun
| | - Haiyang Wu
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Haiyang Wu
| |
Collapse
|
11
|
Gong H, Zhao G, Liu Y, Lu Z. Determinants of complex regional pain syndrome type I in patients with scaphoid waist fracture- a multicenter prospective observational study. BMC Musculoskelet Disord 2022; 23:34. [PMID: 34986822 PMCID: PMC8734294 DOI: 10.1186/s12891-021-04977-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The aim of this prospective study was to assess the incidence of complex regional pain syndrome type I (CRPS I) in patients with scaphoid waist fracture and to explore associated factors. Methods This was a multicenter, prospective observational study. Demographic, imaging indicators and clinical data were collected before the conservative treatment of scaphoid waist fracture patients. The occurrence of CRPS I and pain condition were the main outcomes. To explore the factors associated with CRPS I, multivariate logistic regression model was used. Results A total of 493 scaphoid waist fracture participants undergoing conservative treatment were recruited for this study. The incidence of CRPS I was 20% (n = 87). The average time between injury and the onset of CRPS I was 6.7 ± 2.1 weeks. Multivariable logistic regression analysis revealed that female sex (odds ratio (OR): 1.669; 95% confidence interval (CI): 1.189–2.338), diabetes mellitus (OR: 3.206; 95% CI: 2.284–4.492), and severe pain condition before treatment (visual analog scale (VAS) score more than 4 cm) (OR: 27.966; 95% CI: 19.924–39.187) were independently associated with CRPS I. Conclusions Patients suffering from scaphoid waist fracture may be at a higher risk of CRPS I, especially in women with diabetes mellitus who report severe pain before treatment. Early screening and regular follow up evaluation are recommended in these patients.
Collapse
Affiliation(s)
- Hao Gong
- Department of Hand Surgery, Wuxi Ninth People's Hospital, Wuxi, Jiangsu, China.,Department of Medicine, Soochow University, Suzhou, China
| | - Gang Zhao
- Department of Hand Surgery, Wuxi Ninth People's Hospital, Wuxi, Jiangsu, China
| | - Yuzhou Liu
- Department of Hand Surgery, Wuxi Ninth People's Hospital, Wuxi, Jiangsu, China
| | - Zhengfeng Lu
- Department of Hand Surgery, Wuxi Ninth People's Hospital, Wuxi, Jiangsu, China.
| |
Collapse
|