1
|
Cai P, Zhang W, Jiang S, Xiong Y, Yuan H, Gao Z, Gao X, Ma C, Zhou Y, Gong Y, Qiao H, Jin S, Fu H. Insulin-like Androgenic Gland Hormone Induced Sex Reversal and Molecular Pathways in Macrobrachium nipponense: Insights into Reproduction, Growth, and Sex Differentiation. Int J Mol Sci 2023; 24:14306. [PMID: 37762609 PMCID: PMC10531965 DOI: 10.3390/ijms241814306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This study investigated the potential to use double-stranded RNA insulin-like androgenic gland hormone (dsIAG) to induce sex reversal in Macrobrachium nipponense and identified the molecular mechanisms underlying crustacean reproduction and sex differentiation. The study aimed to determine whether dsIAG could induce sex reversal in PL30-male M. nipponense during a critical period. The sex-related genes were selected by performing the gonadal transcriptome analysis of normal male (dsM), normal female (dsFM), neo-female sex-reversed individuals (dsRM), and unreversed males (dsNRM). After six injections, the experiment finally resulted in a 20% production of dsRM. Histologically, dsRM ovaries developed slower than dsFM, but dsNRM spermathecae developed normally. A total of 1718, 1069, and 255 differentially expressed genes were identified through transcriptome sequencing of the gonads in three comparison groups, revealing crucial genes related to reproduction and sex differentiation, such as GnRHR, VGR, SG, and LWS. Principal Component Analysis (PCA) also distinguished dsM and dsRM very well. In addition, this study predicted that the eyestalks and the "phototransduction-fly" photoperiodic pathways of M. nipponense could play an important role in sex reversal. The enrichment of related pathways and growth traits in dsNRM were combined to establish that IAG played a significant role in reproduction, growth regulation, and metabolism. Finally, complete sex reversal may depend on specific stimuli at critical periods. Overall, this study provides valuable findings for the IAG regulation of sex differentiation, reproduction, and growth of M. nipponense in establishing a monoculture.
Collapse
Affiliation(s)
- Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| | - Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
| | - Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
| | - Xuanbing Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
| | - Cheng Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
| | - Yongkang Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| |
Collapse
|
2
|
Chen J, Han P, Liu X, Wang X. Characterization of Japanese flounder (Paralichthys olivaceus) STAT members: An immune-related gene family involved in Edwardsiella tarda and temperature stress. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108818. [PMID: 37201733 DOI: 10.1016/j.fsi.2023.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The signal transducer and activator of transcription (STAT) family members are not only the transcriptional activators, but also play important roles in regulating inflammatory response. Some members have been reported to be involved in innate bacterial and antiviral immunity in aquatic organisms. However, no systematic research on STATs has been found in teleost. In this present study, we characterized six STAT genes in Japanese flounder based on bioinformatics methods, namely PoSTAT1, PoSTAT2, PoSTAT3, PoSTAT4, PoSTAT5 and PoSTAT6. The phylogenetic analysis of STATs in fish indicated that STATs were highly conserved and revealed an absence of STAT5 in a few species. Further analysis of gene structures and motifs showed STAT proteins shared a similar structure and probably had similar functionality in Japanese flounder. The expression profiles of different development stages and tissues demonstrated that PoSTATs exhibited specificity in temporality and spatiality as well as PoSTAT4 was highly expressed in gill. The transcriptome data analysis of E. tarda and temperature stress showed that PoSTAT1 and PoSTAT2 were more respective to these two kinds of stress. In addition, the results also demonstrated that these PoSTATs might regulate immune response in different ways, manifested by up-regulation in E. tarda infection and down-regulation in temperature stress. In a word, this systematic analysis of PoSTATs would provide valuable information about the phylogenetic relationship of STATs in fish species and help understand the role of STAT genes in the immune response of Japanese flounder.
Collapse
Affiliation(s)
- Jianming Chen
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Cai P, Yuan H, Gao Z, Daka P, Qiao H, Zhang W, Jiang S, Xiong Y, Gong Y, Wu Y, Jin S, Fu H. Sex Reversal Induced by Dietary Supplementation with 17α-Methyltestosterone during the Critical Period of Sex Differentiation in Oriental River Prawn ( Macrobrachium nipponense). Animals (Basel) 2023; 13:1369. [PMID: 37106932 PMCID: PMC10135079 DOI: 10.3390/ani13081369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The steroid 17α-methyltestosterone (MT) inhibits ovarian function and is often used to induce sex reversal artificially in vertebrates. In the present study, different concentrations of MT were added as dietary supplementation, and the effects on sex ratio, growth, and gonadal development were examined. After 40 days, the sex ratio (male:female) in each group increased at different degrees with 50 (1.36:1), 100 (1.57:1), and 200 (2.61:1) mg/kg MT, and neo-males with testis-ovary coexistence were observed in the 200 mg/kg MT group. Furthermore, 50 and 100 mg/kg MT could induce female reversion in neo-males. Histologically, the development of the testes in experimental groups was slower, but the ovaries of the experimental and control groups had similar developmental rates. The expression levels of DMRT11E, Foxl2, and SoxE1 in males at 200 mg/kg MT were 8.65-, 3.75-, and 3.45-fold greater than those of the control group. In crustaceans, sex reversal through vertebrate sex hormones can be observed. Neo-males (sex-reversed female prawns) were maintained by exogenous androgen, and over-reliance led to slow testis growth, small body size, and low growth rate, but sperm was still produced. In female prawns, MT inhibited ovary development and promoted growth.
Collapse
Affiliation(s)
- Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.)
| | - Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.)
| | - Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.)
| | - Peter Daka
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.)
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|