1
|
Xiong H, Guo J. Targeting Hepatic Stellate Cells for the Prevention and Treatment of Liver Cirrhosis and Hepatocellular Carcinoma: Strategies and Clinical Translation. Pharmaceuticals (Basel) 2025; 18:507. [PMID: 40283943 PMCID: PMC12030350 DOI: 10.3390/ph18040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatic stellate cells (HSC) are the major source of myofibroblasts (MFB) in fibrosis and cancer- associated fibroblasts (CAF) in both primary and metastatic liver cancer. Over the past few decades, there has been significant progress in understanding the cellular and molecular mechanisms by which liver fibrosis and HCC occur, as well as the key roles of HSC in their pathogenesis. HSC-targeted approaches using specific surface markers and receptors may enable the selective delivery of drugs, oligonucleotides, and therapeutic peptides that exert optimized anti-fibrotic and anti-HCC effects. Recent advances in omics, particularly single-cell sequencing and spatial transcriptomics, hold promise for identifying new HSC targets for diagnosing and treating liver fibrosis/cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Diseases, Fudan University, Shanghai 200032, China;
- Department of Internal Medicine, Shanghai Medical College, Fu Dan University, Shanghai 200032, China
| | - Jinsheng Guo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Diseases, Fudan University, Shanghai 200032, China;
- Department of Internal Medicine, Shanghai Medical College, Fu Dan University, Shanghai 200032, China
| |
Collapse
|
2
|
Mi C, Liu S, Chen Z. Redefining hepatocellular carcinoma treatment: nanotechnology meets tumor immune microenvironment. J Drug Target 2025:1-20. [PMID: 40079845 DOI: 10.1080/1061186x.2025.2479757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide, characterised by its complex pathogenesis and poor therapeutic outcomes. Despite recent advances in targeted molecular therapies, immune checkpoint inhibitors (ICIs), radiotherapy and conventional chemotherapy, the 5-year survival rate for this neoplasm remains dismally low. The progress in nanotechnology has revolutionised cancer treatment in recent years. These advances provide unprecedented opportunities to overcome the current limitations of different therapeutic modalities. This review provides a comprehensive analysis of how nanotechnology interfaces with the tumour immune microenvironment (TIME) in HCC and can present a new frontier in therapeutic interventions for HCC. We critically overview the latest developments in nanoparticle-based delivery systems for various drugs and also other antitumor agents like thermal therapy and radiotherapy. We also highlight the unique ability of nanoparticles to modulate the immunosuppressive tumour microenvironment (TME) and enhance therapeutic efficacy. Furthermore, we analyse emerging strategies that exploit nanoformulations to overcome biological barriers and enhance drug bioavailability in HCC treatment.
Collapse
Affiliation(s)
- Chuanliang Mi
- Shandong Aimeng Biotechnology Co., Ltd, Jinan, Shandong, China
| | - Sai Liu
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhida Chen
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Hu Y, Zhang L, Qi Q, Ren S, Wang S, Yang L, Zhang J, Liu Y, Li X, Cai X, Duan S, Zhang L. Machine learning-based ultrasomics for predicting response to tyrosine kinase inhibitor in combination with anti-PD-1 antibody immunotherapy in hepatocellular carcinoma: a two-center study. Front Oncol 2024; 14:1464735. [PMID: 39610931 PMCID: PMC11602396 DOI: 10.3389/fonc.2024.1464735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Objective The objective of this study is to build and verify the performance of machine learning-based ultrasomics in predicting the objective response to combination therapy involving a tyrosine kinase inhibitor (TKI) and anti-PD-1 antibody for individuals with unresectable hepatocellular carcinoma (HCC). Radiomic features can reflect the internal heterogeneity of the tumor and changes in its microenvironment. These features are closely related to pathological changes observed in histology, such as cellular necrosis and fibrosis, providing crucial non-invasive biomarkers to predict patient treatment response and prognosis. Methods Clinical, pathological, and pre-treatment ultrasound image data of 134 patients with recurrent unresectable or advanced HCC who treated with a combination of TKI and anti-PD-1 antibody therapy at Henan Provincial People's Hospital and the First Affiliated Hospital of Zhengzhou University between December 2019 and November 2023 were collected and retrospectively analyzed. Using stratified random sampling, patients from the two hospitals were assigned to training cohort (n = 93) and validation cohort (n = 41) at a 7:3 ratio. After preprocessing the ultrasound images, regions of interest (ROIs) were delineated. Ultrasomic features were extracted from the images for dimensionality reduction and feature selection. By utilizing the extreme gradient boosting (XGBoost) algorithm, three models were developed: a clinical model, an ultrasomic model, and a combined model. By analyzing the area under the receiver operating characteristic (ROC) curve (AUC), specificity, sensitivity, and accuracy, the predicted performance of the models was evaluated. In addition, we identified the optimal cutoff for the radiomic score using the Youden index and applied it to stratify patients. The Kaplan-Meier (KM) survival curves were used to examine differences in progression-free survival (PFS) between the two groups. Results Twenty ultrasomic features were selected for the construction of the ultrasomic model. The AUC of the ultrasomic model for the training cohort and validation cohort were 0.999 (95%CI: 0.997-1.000) and 0.828 (95%CI: 0.690-0.966), which compared significant favorably to those of the clinical model [AUC = 0.876 (95%CI: 0.815-0.936) for the training cohort, 0.766 (95%CI: 0.597-0.935) for the validation cohort]. Compared to the ultrasomic model, the combined model demonstrated comparable performance within the training cohort (AUC = 0.977, 95%CI: 0.957-0.998) but higher performance in the validation cohort (AUC = 0.881, 95%CI: 0.758-1.000). However, there was no statistically significant difference (p > 0.05). Furthermore, ultrasomic features were associated with PFS, which was significantly different between patients with radiomic scores (Rad-score) greater than 0.057 and those with Rad-score less than 0.057 in both the training (HR = 0.488, 95% CI: 0.299-0.796, p = 0.003) and validation cohorts (HR = 0.451, 95% CI: 0.229-0.887, p = 0.02). Conclusion The ultrasomic features demonstrates excellent performance in accurately predicting the objective response to TKI in combination with anti-PD-1 antibody immunotherapy among patients with unresectable or advanced HCC.
Collapse
Affiliation(s)
- Yiwen Hu
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Linlin Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qinghua Qi
- Department of Ultrasound, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Ren
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Simeng Wang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lanling Yang
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Juan Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yuanyuan Liu
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiaoxiao Li
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiguo Cai
- Henan Rehabilitation Clinical Medical Research Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shaobo Duan
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Key Laboratory of Ultrasound Imaging and Artificial Intelligence in Medicine, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Health Management, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Lianzhong Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Rehabilitation Clinical Medical Research Center, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Key Laboratory of Ultrasound Imaging and Artificial Intelligence in Medicine, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Yan Z, Chen HQ. Anti-liver cancer effects and mechanisms and its application in nano DDS of polysaccharides: A review. Int J Biol Macromol 2024; 279:135181. [PMID: 39218183 DOI: 10.1016/j.ijbiomac.2024.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Liver cancer is the third leading cause of cancer death, with high incidence and poor treatment effect. In recent years, polysaccharides have attracted more and more attention in the research field of anti-liver cancer because of their high efficiency, low toxicity, good biocompatibility, wide sources and low cost. Polysaccharides have been proven to have good anti-liver cancer activity. In this paper, the pathways and molecular mechanisms of polysaccharides against liver cancer were reviewed in detail. Polysaccharides exert anti-liver cancer activity by blocking cell cycle, inducing apoptosis, regulating immunity, inhibiting cancer cell metastasis, inhibiting tumor angiogenesis and so on. The primary structure and chain conformation of polysaccharides have an important influence on their anti-liver cancer activity. Structural modification enhanced the anti-liver cancer activity of polysaccharides. Polysaccharides have good attenuated and synergistic effects on chemotherapy drugs. Polysaccharides can be used as functional carriers to construct intelligent nano drug delivery systems (DDS) targeting liver cancer. This review can provide theoretical support for the further development and application of polysaccharides in the field of anti-liver cancer, and provide theoretical reference and clues for relevant researchers in food, nutrition, medicine and other fields.
Collapse
Affiliation(s)
- Zheng Yan
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Han-Qing Chen
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China.
| |
Collapse
|
5
|
Ruishi X, Linyi X, Yunfan B, Wenbo Y, Xiaoying Z, Xiaoxue F, Difu Z, Xintian L, Ming Z, Haoming L. New perspectives on chemokines in hepatocellular carcinoma therapy: a critical pathway for natural products regulation of the tumor microenvironment. Front Immunol 2024; 15:1456405. [PMID: 39206194 PMCID: PMC11349538 DOI: 10.3389/fimmu.2024.1456405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary neoplasms of the liver and one of the most common solid tumors in the world. Its global incidence is increasing and it has become the third leading cause of cancer-related deaths. There is growing evidence that chemokines play an important role in the tumor microenvironment, regulating the migration and localization of immune cells in tissues and are critical for the function of the immune system. This review comprehensively analyses the expression and activity of chemokines in the TME of HCC and describes their interrelationship with hepatocarcinogenesis and progression. Special attention is given to the role of chemokine-chemokine receptors in the regulation of immune cell accumulation in the TME. Therapeutic strategies targeting tumor-promoting chemokines or the induction/release of beneficial chemokines are reviewed, highlighting the potential value of natural products in modulating chemokines and their receptors in the treatment of HCC. The in-depth discussion in this paper provides a theoretical basis for the treatment of HCC. It is an important reference for new drug development and clinical research.
Collapse
Affiliation(s)
- Xie Ruishi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Linyi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bai Yunfan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Wenbo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhang Xiaoying
- The First Hospital of Jilin University, Changchun, China
| | - Fang Xiaoxue
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Difu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lan Xintian
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Ming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Luo Haoming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
6
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
7
|
Zhang D, Fang J, Shan J, Xu L, Wu Y, Lu B, Zhang X, Wang C, Sun P, Wang Q. SCARB2 associates with tumor-infiltrating neutrophils and predicts poor prognosis in breast cancer. Breast Cancer Res Treat 2024; 207:15-24. [PMID: 38914918 DOI: 10.1007/s10549-024-07401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) plays a crucial role in various aspects of breast cancer development and metastasis. Nevertheless, the expression, prognostic significance, and correlation with clinical features of SCARB2 in breast cancer, as well as the infiltrative characteristics of TME, remain largely unknown. METHODS We analyzed the differential presentation of SCARB2 mRNA in breast cancer tissues and nontumorous breast tissues and prognosis by The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Additionally, the Tumor Immunity Estimation Resource (TIMER) was taken to evaluate the correlation between SCARB2 mRNA presence and tumor-infiltrating immune cells and immune checkpoints in the TME in breast cancer. We performed multiple immunohistochemical staining to verify the SCARB2 protein expression in breast cancer tissues and its relationship to immune cells and checkpoints and clinicopathological features. RESULTS We identified elevated SCARB2 expression in breast cancer tissues, and high SCARB2 protein presentation was associated with advanced clinical stage and unfavorable prognosis. In addition, enhanced SCARB2 protein presence was closely correlated with up-regulation CD66b+ neutrophils infiltration in tumor tissues (r = 0.210, P < 0.05) and CD68 + CD163+ M2 macrophages in the interstitium (r = 0.233, P < 0.05), as well as the immune checkpoints, including PD-1 (r = 0.314, P < 0.01) protein expression. CONCLUSION SCARB2 holds promise for predicting the clinical outcome of breast cancer patients and could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Dan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jun Fang
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiali Shan
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Lijun Xu
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yunxi Wu
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Lu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaojing Zhang
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chongyu Wang
- Department of Medicine, Xinglin College, Nantong University, Nantong, 226007, Jiangsu, China
| | - Pingping Sun
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
8
|
Peng L, Xu S, Xu JL. Integration of Single-Cell RNA Sequencing and Bulk RNA Sequencing to Identify an Immunogenic Cell Death-Related 5-Gene Prognostic Signature in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:879-900. [PMID: 38770169 PMCID: PMC11104445 DOI: 10.2147/jhc.s449419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Immunogenic cell death (ICD) can enhance the potency of immunotherapy in cancer treatment. Nevertheless, it is ambiguous how ICD-related genes (ICDRGs) contribute to hepatocellular carcinoma (HCC). Methods Single-cell RNA sequencing (scRNA-seq) data were used to distinguish malignant cells from normal cells in the HCC tumor microenvironment(TME). Bulk RNA sequencing data was employed to acquire the landscape of the 33 ICDRGs. Unsupervised clustering identified two ICD molecular subtypes. The cellular infiltration characteristics and biological behavior in different subtypes were analyzed by ssGSEA. Subsequently, differentially expressed genes (DEGs) between the two subtypes were determined, based on which patients were classified into three gene clusters. Then, the prognostic model was constructed by Lasso-Cox analysis. Finally, we investigated the expression of risk genes in cancer cell line encyclopedia (CCLE) and validated the function of NKX3-2 in vitro experiments. Results ICD scores and ICDRGs expression in malignant cells were significantly lower than in normal cells by scRNA-seq analysis. ICD-high subtype was characterized by ICD-related gene overexpression and high levels of immune infiltration abundance and immune checkpoints; Three DEGs-related gene clusters were likewise strongly linked to stromal and immunological activation. In the ICD-related prognostic model consisting of NKX3-2, CHODL, MMP1, NR0B1, and CTSV, the low-risk group patients had a better endpoint and displayed increased susceptibility to immunotherapy and chemotherapeutic drugs like 5-Fluorouracil, afatinib, bortezomib, cediratinib, lapatinib, dasatinib, gefitinib and crizotinib. Moreover, NKX3-2 amplification in HCC samples has been verified by experiments, and its disruption suppressed the proliferation and invasion of tumor cells. Conclusion Our study highlighted the potential of the ICDRGs risk score as a prognostic indicator to aid in the accurate diagnosis and immunotherapy sensitivity of HCC.
Collapse
Affiliation(s)
- Liqun Peng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, People’s Republic of China
| | - Shaohua Xu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jian-Liang Xu
- Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
9
|
Gemmete JJ. Partial Cryoablation and Matrix Metalloproteinase Inhibition May Be a Possible Treatment Option for Hepatocellular Carcinoma. Radiology 2024; 310:e240015. [PMID: 38349243 DOI: 10.1148/radiol.240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Affiliation(s)
- Joseph J Gemmete
- From the Department of Radiology, University of Michigan Hospitals, 1500 E Medical Center Dr, UH B1D 328, Ann Arbor, MI 48109
| |
Collapse
|
10
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
11
|
Kotsari M, Dimopoulou V, Koskinas J, Armakolas A. Immune System and Hepatocellular Carcinoma (HCC): New Insights into HCC Progression. Int J Mol Sci 2023; 24:11471. [PMID: 37511228 PMCID: PMC10380581 DOI: 10.3390/ijms241411471] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
According to the WHO's recently released worldwide cancer data for 2020, liver cancer ranks sixth in morbidity and third in mortality among all malignancies. Hepatocellular carcinoma (HCC), the most common kind of liver cancer, accounts approximately for 80% of all primary liver malignancies and is one of the leading causes of death globally. The intractable tumor microenvironment plays an important role in the development and progression of HCC and is one of three major unresolved issues in clinical practice (cancer recurrence, fatal metastasis, and the refractory tumor microenvironment). Despite significant advances, improved molecular and cellular characterization of the tumor microenvironment is still required since it plays an important role in the genesis and progression of HCC. The purpose of this review is to present an overview of the HCC immune microenvironment, distinct cellular constituents, current therapies, and potential immunotherapy methods.
Collapse
Affiliation(s)
- Maria Kotsari
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassiliki Dimopoulou
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - John Koskinas
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Xie L, Ding Y, Zhang X, Zhang Z, Zeng S, Wang L, Yang Z, Liu Q, Hu ZW. A Cascade-Targeted Enzyme-Instructed Peptide Self-Assembly Strategy for Cancer Immunotherapy through Boosting Immunogenic Cell Death. SMALL METHODS 2023; 7:e2201416. [PMID: 36965100 DOI: 10.1002/smtd.202201416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/04/2023] [Indexed: 05/17/2023]
Abstract
Immunogenic cell death (ICD) approaches by encumbering mitochondrial functions provide great promise for the treatment of malignant tumors, but these kinds of ICD strategies are still in their infancy. Here, one multifunctional drug-loaded, cascade-targeted, and enzyme-instructed self-assembling peptide nanomedicine (Comp. 4) for ICD-based cancer therapy is constructed. Comp. 4 consists of 1) lonidamine (LND) that specifically interferes with mitochondrial functions; 2) a programmed death ligand 1 (PD-L1) binding peptide sequence (NTYYEDQG) and a mitochondria-specific motif (triphenylphosphonium, TPP) that can sequentially control the cell membrane and mitochondria targeting capacities, respectively; and 3) a -GD FD FpD Y- assembly core to in situ organize peptide assemblies responsive to alkaline phosphatase (ALP). Comp. 4 demonstrates noticeable structural and morphological transformations in the presence of ALP and produces peptide assemblies in mouse colon cancer cells (CT26) with high expressions of both ALP and PD-L1. Moreover, the presence of PD-L1- and mitochondria-specific motifs can assist Comp. 4 for effective endocytosis and endosomal escape, forming peptide assemblies and delivering LND into mitochondria. Consequently, Comp. 4 shows superior capacities to in vivo induce abundant mitochondrial oxidative stress, provoke robust ICD responses, and produce an immunogenic tumor microenvironment, successfully inhibiting CT26 tumor growth by eliciting a systemic ICD-based antitumor immunity.
Collapse
Affiliation(s)
- Limin Xie
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yinghao Ding
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Xiangyang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenghao Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, P. R. China
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, P. R. China
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Wen Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
13
|
Foglia B, Beltrà M, Sutti S, Cannito S. Metabolic Reprogramming of HCC: A New Microenvironment for Immune Responses. Int J Mol Sci 2023; 24:7463. [PMID: 37108625 PMCID: PMC10138633 DOI: 10.3390/ijms24087463] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma is the most common primary liver cancer, ranking third among the leading causes of cancer-related mortality worldwide and whose incidence varies according to geographical area and ethnicity. Metabolic rewiring was recently introduced as an emerging hallmark able to affect tumor progression by modulating cancer cell behavior and immune responses. This review focuses on the recent studies examining HCC's metabolic traits, with particular reference to the alterations of glucose, fatty acid and amino acid metabolism, the three major metabolic changes that have gained attention in the field of HCC. After delivering a panoramic picture of the peculiar immune landscape of HCC, this review will also discuss how the metabolic reprogramming of liver cancer cells can affect, directly or indirectly, the microenvironment and the function of the different immune cell populations, eventually favoring the tumor escape from immunosurveillance.
Collapse
Affiliation(s)
- Beatrice Foglia
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Marc Beltrà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Salvatore Sutti
- Department of Health Sciences, Interdisciplinary Research Center for Autoimmune Diseases, University of East Piedmont, 28100 Novara, Italy
| | - Stefania Cannito
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| |
Collapse
|
14
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|