1
|
Casais-E-Silva LL, Cruz LF, Dos Reis VP, Paloschi MV, Teixeira C, Zuliani JP, da Silva Setubal S. Micrurus lemniscatus venom stimulates leukocyte functions in vivo. Arch Toxicol 2025; 99:1591-1603. [PMID: 39948207 DOI: 10.1007/s00204-025-03970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/27/2025] [Indexed: 04/04/2025]
Abstract
While Micrurus venoms are primarily recognized for inducing neurotoxic effects, experimental findings have also documented additional manifestations such as local effects such as edema, myotoxicity, and inflammation. However, limited information is available regarding the impact of Micrurus venom on leukocyte functions. In this study, we investigated the in vivo effects of Micrurus lemniscatus venom (ML venom) on peritoneal leukocyte functions. Intraperitoneal (i.p.) injection of ML venom stimulated leukocyte migration, particularly at lower doses, with predominance of mononuclear cells. Both doses also triggered the release of cytokines (TNF-α, IL-1β, and IL-6) three hours after injection. Additionally, ML venom elicited the production of reactive oxygen species (ROS) and hydrogen peroxide (H2O2), as well as enhanced phagocytosis, along with the release of dsDNA and lipid droplets by these cells. This study represents the first demonstration of peritoneal leukocyte activation by Micrurus lemniscatus venom.
Collapse
Affiliation(s)
- Luciana Lyra Casais-E-Silva
- Laboratório de Neuroimunoendocrinologia e Toxinologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil.
| | - Larissa Faustina Cruz
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Valdison P Dos Reis
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Mauro V Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Catarina Teixeira
- Laboratório de Farmacologia-Instituto Butantan, São Paulo, SP, Brazil.
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Sulamita da Silva Setubal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil.
| |
Collapse
|
2
|
Zuliani JP, Gutiérrez JM, Teixeira C. Role of nitric oxide and signaling pathways modulating the stimulatory effect of snake venom secretory PLA 2S on non-opsonized zymosan phagocytosis by macrophages. Toxicon 2024; 243:107716. [PMID: 38614247 DOI: 10.1016/j.toxicon.2024.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The phagocytic activity of macrophages activated with MT-II, a Lys-49 PLA2 homolog, and MT-III, an Asp-49 PLA2, from Bothrops asper snake venom, was investigated in this study using a pharmacological approach. Stimulating thioglycollate-elicited macrophages with both venom components enhanced their ability to phagocytose non-opsonized zymosan particles. MT-II and MT-III-induced phagocytosis was drastically inhibited by pretreating cells with L-NAME, aminoguanidine or L-NIL, cNOS or iNOS inhibitors, or with ODQ (sGC inhibitor) or Rp-cGMPS (PKG inhibitor). These results indicate that the NO/sGC/GMP/PKG pathway plays an essential role in the β-glucan-mediated phagocytosis induced in macrophages by these venom-secretory PLA2s.
Collapse
Affiliation(s)
- Juliana Pavan Zuliani
- Laboratório de Farmacologia - Instituto Butantan, Sao Paulo, Brazil; Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz Rondônia/FIOCRUZ-RO, Porto Velho-RO, Brazil; Dep. Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Catarina Teixeira
- Laboratório de Farmacologia - Instituto Butantan, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Wu M, Zhang S, Chi C, Zhu H, Ma H, Liu L, Shi Q, Li D, Ju X. 1,5-AG suppresses pro-inflammatory polarization of macrophages and promotes the survival of B-ALL in vitro by upregulating CXCL14. Mol Immunol 2023; 158:91-102. [PMID: 37178520 DOI: 10.1016/j.molimm.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
B-lineage acute lymphoblastic leukemia (B-ALL) is one of the most common malignancies in children. Despite advances in treatment, the role of the tumor microenvironment in B-ALL remains poorly understood. Among the key components of the immune microenvironment, macrophages play a critical role in the progression of the disease. However, recent research has suggested that abnormal metabolites may influence the function of macrophages, altering the immune microenvironment and promoting tumor growth. Our previous non-targeted metabolomic detection revealed that the metabolite 1,5-anhydroglucitol (1,5-AG) level in the peripheral blood of children newly diagnosed with B-ALL was significantly elevated. Except for its direct influence on leukemia cells, the effect of 1,5-AG on macrophages is still unclear. Herein, we demonstrated new potential therapeutic targets by focusing on the effect of 1,5-AG on macrophages. We used polarization-induced macrophages to determine how 1,5-AG acted on M1-like polarization and screened out the target gene CXCL14 via transcriptome sequencing. Furthermore, we constructed CXCL14 knocked-down macrophages and a macrophage-leukemia cell coculture model to validate the interaction between macrophages and leukemia cells. We discovered that 1,5-AG upregulated the CXCL14 expression, thereby inhibiting M1-like polarization. CXCL14 knockdown restored the M1-like polarization of macrophages and induced leukemia cells apoptosis in the coculture model. Our findings offer new possibilities for the genetic engineering of human macrophages to rehabilitate their immune activity against B-ALL in cancer immunotherapy.
Collapse
Affiliation(s)
- Min Wu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shule Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Cheng Chi
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Huasu Zhu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Huixian Ma
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Linghong Liu
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China; Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
4
|
Zuliani JP. Alarmins and inflammatory aspects related to snakebite envenomation. Toxicon 2023; 226:107088. [PMID: 36924999 DOI: 10.1016/j.toxicon.2023.107088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Snakebite envenoming is characterized by the injection of a mixture of proteins/toxins present in venom following the bite of a venomous snake. The toxins have potent bioactivity capability to impact different aspects of envenomation evolution. The cascade of immune responses initiated by the participation of venom and/or toxins isolated from snake venom can contribute to the systemic and local inflammatory effects observed in victims of envenomation. To understand envenomation, a deeper comprehension of the numerous cells, mediators, and components that comprise the immune system reaction to the venom components is required. Thus, activities related to the immune response are highlighted in this study, including the initial line of defense of the innate immune response as signals for the complicated reaction led by specialized cells.
Collapse
Affiliation(s)
- Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|