1
|
Friesen S, Kruchinin SE, Fedotova MV, Buchner R. Cation-Binding of Glutamate in Aqueous Solution. J Phys Chem B 2024; 128:5746-5755. [PMID: 38832643 PMCID: PMC11182346 DOI: 10.1021/acs.jpcb.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Interactions of the cations Li+, Na+, Mg2+, and Ca2+ with L-glutamate (Glu-) in aqueous solution were studied at room temperature with dielectric relaxation spectroscopy in the gigahertz region. Spectra of ∼0.4 M NaGlu with added LiCl, NaCl, MgCl2, or CaCl2 (c(MCln) ≤ 1.5 M) were evaluated and experiments supplemented by density functional theory and 3D reference interaction site model (3D-RISM) calculations. In addition to the modes found for aqueous NaGlu, namely, the reorientation of free Glu- ions (peaking at ∼1.6 GHz), of moderately retarded H2O molecules hydrating the carboxylate moieties of Glu- (∼8.4 GHz), of the cooperative resettling of the H-bond network of bulk water (∼20 GHz), and its preceding fast H-bond flip (∼400 GHz), an additional low-frequency relaxation at ∼0.4 GHz was detected upon the addition of the four salts. In the case of NaGlu + MgCl2(aq) and NaGlu + CaCl2(aq), this mode could be unequivocally assigned to an ion pair formed by the cation and the side-chain carboxylate moiety of Glu-. For NaGlu + LiCl(aq), either this species or a backbone-[Li+-H2O-Cl--Glu-] triple ion is formed. Binding constants increase in the order Li+
Collapse
Affiliation(s)
- Sergej Friesen
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg D-93040, Germany
| | - Sergey E. Kruchinin
- G.
A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya st. 1, Ivanovo 153045, Russian Federation
| | - Marina V. Fedotova
- G.
A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya st. 1, Ivanovo 153045, Russian Federation
| | - Richard Buchner
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg D-93040, Germany
| |
Collapse
|
2
|
Frolov NE, Shishkina AV, Vener MV. Specific Proton-Donor Properties of Glycine Betaine. Metric Parameters and Enthalpy of Noncovalent Interactions in its Dimer, Water Complexes and Crystalline Hydrate. Int J Mol Sci 2023; 24:12971. [PMID: 37629150 PMCID: PMC10455243 DOI: 10.3390/ijms241612971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Trimethylglycine (glycine betaine, GB) is an important organic osmolyte that accumulates in various plant species in response to environmental stresses and has significant potential as a bioactive agent with low environmental impact. It is assumed that the hydration of GB is playing an important role in the protective mechanism. The hydration and aggregation properties of GB have not yet been studied in detail at the atomistic level. In this work, noncovalent interactions in the GB dimer and its complexes with water and crystalline monohydrate are studied. Depending on the object, periodic and non-periodic DFT calculations are used. Particular attention is paid to the metric parameters and enthalpies of intermolecular hydrogen bonds. The identification of noncovalent interactions is carried out by means of the Bader analysis of periodic or non-periodic electron density. The enthalpy of hydrogen bonds is estimated using the Rosenberg formula (PCCP 2 (2000) 2699). The specific proton donor properties of glycine betaine are due to its ability to form intermolecular C-H∙∙∙O bonds with the oxygen atom of a water molecule or the carboxylate group of a neighboring GB. The enthalpy of these bonds can be significantly greater than 10 kJ/mol. The water molecule that forms a hydrogen bond with the carboxylate group of GB also interacts with its CH groups through lone pairs of electrons. The C-H∙∙∙O bonds contribute up to 40% of the total entropy of the GB-water interaction, which is about 45 kJ/mol. The possibility of identifying C-H∙∙∙O bonds by the proton nuclear magnetic resonance method is discussed.
Collapse
Affiliation(s)
- Nikita E. Frolov
- V. M. Gorbatov Federal Research Center for Food Systems, Talalikhina St., 26, Moscow 109316, Russia;
| | - Anastasia V. Shishkina
- Department of Physics and Engineering Environmental Protection, Northern (Arctic) Federal University, Severnaya Dvina Emb. 17, Arkhangelsk 163001, Russia;
| | - Mikhail V. Vener
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russia
| |
Collapse
|
3
|
Diclofenac Ion Hydration: Experimental and Theoretical Search for Anion Pairs. Molecules 2022; 27:molecules27103350. [PMID: 35630826 PMCID: PMC9146526 DOI: 10.3390/molecules27103350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Self-assembly of organic ions in aqueous solutions is a hot topic at the present time, and substances that are well-soluble in water are usually studied. In this work, aqueous solutions of sodium diclofenac are investigated, which, like most medicinal compounds, is poorly soluble in water. Classical MD modeling of an aqueous solution of diclofenac sodium showed equilibrium between the hydrated anion and the hydrated dimer of the diclofenac anion. The assignment and interpretation of the bands in the UV, NIR, and IR spectra are based on DFT calculations in the discrete-continuum approximation. It has been shown that the combined use of spectroscopic methods in various frequency ranges with classical MD simulations and DFT calculations provides valuable information on the association processes of medical compounds in aqueous solutions. Additionally, such a combined application of experimental and calculation methods allowed us to put forward a hypothesis about the mechanism of the effect of diclofenac sodium in high dilutions on a solution of diclofenac sodium.
Collapse
|
4
|
Site Density Functional Theory and Structural Bioinformatics Analysis of the SARS-CoV Spike Protein and hACE2 Complex. Molecules 2022; 27:molecules27030799. [PMID: 35164065 PMCID: PMC8839245 DOI: 10.3390/molecules27030799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/02/2022] Open
Abstract
The entry of the SARS-CoV-2, a causative agent of COVID-19, into human host cells is mediated by the SARS-CoV-2 spike (S) glycoprotein, which critically depends on the formation of complexes involving the spike protein receptor-binding domain (RBD) and the human cellular membrane receptor angiotensin-converting enzyme 2 (hACE2). Using classical site density functional theory (SDFT) and structural bioinformatics methods, we investigate binding and conformational properties of these complexes and study the overlooked role of water-mediated interactions. Analysis of the three-dimensional reference interaction site model (3DRISM) of SDFT indicates that water mediated interactions in the form of additional water bridges strongly increases the binding between SARS-CoV-2 spike protein and hACE2 compared to SARS-CoV-1-hACE2 complex. By analyzing structures of SARS-CoV-2 and SARS-CoV-1, we find that the homotrimer SARS-CoV-2 S receptor-binding domain (RBD) has expanded in size, indicating large conformational change relative to SARS-CoV-1 S protein. Protomer with the up-conformational form of RBD, which binds with hACE2, exhibits stronger intermolecular interactions at the RBD-ACE2 interface, with differential distributions and the inclusion of specific H-bonds in the CoV-2 complex. Further interface analysis has shown that interfacial water promotes and stabilizes the formation of CoV-2/hACE2 complex. This interaction causes a significant structural rigidification of the spike protein, favoring proteolytic processing of the S protein for the fusion of the viral and cellular membrane. Moreover, conformational dynamics simulations of RBD motions in SARS-CoV-2 and SARS-CoV-1 point to the role in modification of the RBD dynamics and their impact on infectivity.
Collapse
|
5
|
Kruchinin SE, Fedotova MV. Ion Pairing of the Neurotransmitters Acetylcholine and Glutamate in Aqueous Solutions. J Phys Chem B 2021; 125:11219-11231. [PMID: 34597044 DOI: 10.1021/acs.jpcb.1c05117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotransmitters (NTs) play an important role in neural communication, regulating a variety of functions such as motivation, learning, memory, and muscle contraction. Their intermolecular interactions in biological media are an important factor affecting their biological activity. However, the available information on the features of these interactions is scarce and contradictory, especially, in an estimation of possible ion binding. In this paper, we present the results of a study for two well-known NTs, acetylcholine (ACh) and glutamate (Glu), with relation to the NT-inorganic ion and the NT-NT binding in a water environment. The features of NT pairing are investigated in aqueous AChCl and NaGlu solutions over a wide concentration range using the integral equation method in 1D- and 3D- reference interaction site model (RISM) approaches. The data for ACh are given for its two bioactive TG (trans, gauche) and TT (trans, trans) conformers. As was found, for both NTs, the results indicate the NT-inorganic counterion contact pair to be the predominant associate type in the concentrated solutions. In this case, the counterions occupy the vacated "water" space in the hydration shell of the onium moiety (ACh) or carboxylate groups (Glu). For ACh, the "unfolded" TT conformer demonstrates a slightly greater possibility for counterion pairing in comparison with the "folded" TG conformer. For Glu, the probability of its binding with a counterion is slightly stronger for the "side-chain" carboxylate group than for the "backbone" group. The obtained results also revealed an insignificant probability of Glu--Glu- pairing. Namely, the RISM data indicate Glu--Glu- binding by NH3+-COO- interactions. A link between the ion binding of NTs and their biological activity is discussed. This contribution adds new knowledge to our understanding of the interactions between the NTs and their molecular environment, providing further insights into the behavior of these compounds in biological media.
Collapse
Affiliation(s)
- Sergey E Kruchinin
- G.A. Krestov Institute of Solution Chemistry, the Russian Academy of Sciences, Akademicheskaya Street 1, Ivanovo 153045, Russia
| | - Marina V Fedotova
- G.A. Krestov Institute of Solution Chemistry, the Russian Academy of Sciences, Akademicheskaya Street 1, Ivanovo 153045, Russia
| |
Collapse
|
6
|
|
7
|
|
8
|
Abstract
Schematic representation of the multipolar molecule surrounded by salt ions in a dielectric solvent medium.
Collapse
Affiliation(s)
- Yury A. Budkov
- School of Applied Mathematics
- National Research University Higher School of Economics
- 123458 Moscow
- Russia
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
| |
Collapse
|
9
|
Fedotova MV, Kruchinin SE, Chuev GN. Features of local ordering of biocompatible ionic liquids: The case of choline-based amino acid ionic liquids. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Fedotova MV. Compatible osmolytes - bioprotectants: Is there a common link between their hydration and their protective action under abiotic stresses? J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Levina E, Penkov NV, Rodionova NN, Tarasov SA, Barykina DV, Vener MV. Hydration of the Carboxylate Group in Anti-Inflammatory Drugs: ATR-IR and Computational Studies of Aqueous Solution of Sodium Diclofenac. ACS OMEGA 2018; 3:302-313. [PMID: 30023777 PMCID: PMC6044930 DOI: 10.1021/acsomega.7b01034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/27/2017] [Indexed: 05/12/2023]
Abstract
Diclofenac (active ingredient of Voltaren) has a significant, multifaceted role in medicine, pharmacy, and biochemistry. Its physical properties and impact on biomolecular structures still attract essential scientific interest. However, its interaction with water has not been described yet at the molecular level. In the present study, we shed light on the interaction between the steric hindrance (the intramolecular N-H···O bond, etc.) carboxylate group (-CO2-) with water. Aqueous solution of sodium declofenac is investigated using attenuated total reflection-infrared (ATR-IR) and computational approaches, i.e., classical molecular dynamics (MD) simulations and density functional theory (DFT). Our coupled classical MD simulations, DFT calculations, and ATR-IR spectroscopy results indicated that the -CO2- group of the diclofenac anion undergoes strong specific interactions with the water molecules. The combined experimental and theoretical techniques provide significant insights into the spectroscopic manifestation of these interactions and the structure of the hydration shell of the -CO2- group. Moreover, the developed methodology for the theoretical analysis of the ATR-IR spectrum could serve as a template for the future IR/Raman studies of the strong interaction between the steric hindrance -CO2- group of bioactive molecules with the water molecules in dilute aqueous solutions.
Collapse
Affiliation(s)
- Elena
O. Levina
- Department
of Molecular and Chemical Physics, Moscow
Institute of Physics and Technology, 7 Institutskiy per., 141700 Dolgoprudny, Russia
| | - Nikita V. Penkov
- Department
of Methods of Optical and Spectral Analysis, Institute of Cell Biophysics, Russian Academy of Sciences, 3 Institutskaya Street, 142292 Pushchino, Russia
| | - Natalia N. Rodionova
- OOO
“NPF” Materia Medica Holding, 47-1 Trifonovskaya Street, 129272 Moscow, Russia
| | - Sergey A. Tarasov
- OOO
“NPF” Materia Medica Holding, 47-1 Trifonovskaya Street, 129272 Moscow, Russia
| | - Daria V. Barykina
- OOO
“NPF” Materia Medica Holding, 47-1 Trifonovskaya Street, 129272 Moscow, Russia
| | - Mikhail V. Vener
- Department
of Quantum Chemistry, Mendeleev University
of Chemical Technology, 9 Miusskaya Square, 125047 Moscow, Russia
- E-mail:
| |
Collapse
|
12
|
Fedotova MV, Kruchinin SE, Chuev GN. Local ion hydration structure in aqueous imidazolium-based ionic liquids: The effects of concentration and anion nature. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Hydration and ion-binding of glycine betaine: How they may be involved into protection of proteins under abiotic stresses. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Fedotova MV, Kruchinin SE, Chuev GN. Hydration structure of osmolyte TMAO: concentration/pressure-induced response. NEW J CHEM 2017. [DOI: 10.1039/c6nj03296f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of solute concentration/pressure on the TMAO hydration structure was studied to understand its protective action under abiotic stressors.
Collapse
Affiliation(s)
- Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry
- The Russian Academy of Sciences
- Ivanovo
- Russia
| | - Sergey E. Kruchinin
- G.A. Krestov Institute of Solution Chemistry
- The Russian Academy of Sciences
- Ivanovo
- Russia
| | - Gennady N. Chuev
- Institute of Theoretical and Experimental Biophysics
- The Russian Academy of Sciences
- Pushchino
- Russia
| |
Collapse
|
15
|
Dmitrieva OA, Fedotova MV, Buchner R. Evidence for cooperative Na+ and Cl− binding by strongly hydrated l-proline. Phys Chem Chem Phys 2017; 19:20474-20483. [DOI: 10.1039/c7cp04335j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Strongly hydrated l-proline cooperatively binds Na+ and Cl− ions in aqueous solution.
Collapse
Affiliation(s)
- Olga A. Dmitrieva
- G.A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo
- Russian Federation
| | - Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo
- Russian Federation
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- 93040 Regensburg
- Germany
| |
Collapse
|
16
|
Proline hydration at low temperatures: its role in the protection of cell from freeze-induced stress. Amino Acids 2016; 48:1685-94. [DOI: 10.1007/s00726-016-2232-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
|
17
|
Bešter-Rogač M, Fedotova MV, Kruchinin SE, Klähn M. Mobility and association of ions in aqueous solutions: the case of imidazolium based ionic liquids. Phys Chem Chem Phys 2016; 18:28594-28605. [DOI: 10.1039/c6cp05010g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining MD simulations and RISM calculations with experiments, we demonstrated that the interionic interactions of investigated ILs as model 1,1 electrolytes in water solutions are weak but evidently dependent on the molecular structure.
Collapse
Affiliation(s)
| | | | | | - Marco Klähn
- Institute of Chemical and Engineering Sciences
- Agency for Science
- Technology and Research
- Singapore
| |
Collapse
|
18
|
Chuev GN, Vyalov I, Georgi N. Exact site–site bridge functions for dielectric consistent reference interaction site model: A test for ambient water. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2014.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Ion-selective interactions of biologically relevant inorganic ions with alanine zwitterion: a 3D-RISM study. Amino Acids 2015; 47:1015-23. [DOI: 10.1007/s00726-015-1930-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/25/2015] [Indexed: 11/27/2022]
|
20
|
Fedotova MV, Dmitrieva OA. Characterization of selective binding of biologically relevant inorganic ions with the proline zwitterion by 3D-RISM theory. NEW J CHEM 2015. [DOI: 10.1039/c5nj01559f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The features of selective binding of several biologically relevant mono- and divalent inorganic ions with the proline zwitterion were studied over a wide range of electrolyte concentrations.
Collapse
Affiliation(s)
- Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences
- Ivanovo 153045
- Russia
| | - Olga A. Dmitrieva
- G.A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences
- Ivanovo 153045
- Russia
| |
Collapse
|
21
|
Fedotova MV, Kruchinin SE. Ion-binding of glycine zwitterion with inorganic ions in biologically relevant aqueous electrolyte solutions. Biophys Chem 2014; 190-191:25-31. [DOI: 10.1016/j.bpc.2014.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 11/29/2022]
|
22
|
Structural parameters of alanine zwitterion hydration from the data of the integral equation method in the RISM approximation. Russ Chem Bull 2014. [DOI: 10.1007/s11172-013-0286-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Fedotova MV, Dmitrieva OA. Hydration structure of -NH 2 + and -COO− of L-proline zwitterion from data of 1D-RISM integral equation method. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2014. [DOI: 10.1134/s0036024414050070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Theoretical study of hydrated Ca2+-amino acids (glycine, threonine and phenylalanine) clusters. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Fedotova MV, Kruchinin SE. Hydration of para-aminobenzoic acid (PABA) and its anion—The view from statistical mechanics. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.05.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|