1
|
Kumar P, Bhardwaj VK, Purohit R. Highly robust quantum mechanics and umbrella sampling studies on inclusion complexes of curcumin and β-cyclodextrin. Carbohydr Polym 2024; 323:121432. [PMID: 37940299 DOI: 10.1016/j.carbpol.2023.121432] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 11/10/2023]
Abstract
The poor aqueous solubility of curcumin (CUR) obstructs its wide utilization in nutraceuticals, cosmetics, and pharmaceutical companies. This study is dedicated to investigate the stability of CUR inside the hydrophobic pocket of β-cyclodextrin (β-CD), hydroxypropyl-β-CD (HP-β-CD), and 2,6-Di-O-methyl-β-CD (DM-β-CD). Initially, molecular mechanics (MM) calculations and subsequently quantum mechanical (QM) calculations were performed on inclusion complexes to strengthen the MM results. We performed microsecond timescale MD simulations to observe the structural dynamics of CUR inside the cavity of CDs. We elucidated the most stable binding orientations of CUR inside the cavity of CDs based on binding free energy obtained from the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) and umbrella sampling simulations. Furthermore, the two-layered ONIOM (B3LYP/6-311+G(2d,p):PM7) method with CPCM implicit water model was used to derive the complete energetics and thermodynamics of inclusion complexes at 1:1 stoichiometry. Each inclusion reaction was exothermic and spontaneous. The chemical reactivity and kinetic stability of inclusion complexes were described by HOMO-LUMO molecular orbital energies. In conclusion, our studies revealed that HP-β-CD had the highest binding affinity for CUR with the most negative complexation energy (-6520.69 kJ/mol) and Gibb's free energy change (-6448.20 kJ/mol). The atomic-level investigation of noncovalent interactions between CUR and the hydroxypropyl groups in HP-β-CD/CUR complex may be helpful to drive new derivatives of HP-β-CD with better host capacity. The computational strategy adopted here might serve as a benchmark for increasing the solubility of numerous clinically significant molecules.
Collapse
Affiliation(s)
- Pramod Kumar
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
2
|
Kumar P, Bhardwaj VK, Purohit R. Dispersion-corrected DFT calculations and umbrella sampling simulations to investigate stability of Chrysin-cyclodextrin inclusion complexes. Carbohydr Polym 2023; 319:121162. [PMID: 37567706 DOI: 10.1016/j.carbpol.2023.121162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
The study of inclusion complexes of Chrysin (ChR) with three forms of cyclodextrins (CDs) α-, β-, and γ-CD was accomplished to examine the stability of ChR inside the central cavities of CDs. The aim of study was to identify the most suitable form of CD to improve the hydro-solubility of poorly soluble ChR bioactive molecule. Microsecond timescale molecular dynamics (MD) simulations were performed on four inclusion complexes (α-CD/ChR, β-CD/ChR, and two conformations of γ-CD/ChR) to examine the dynamics of ChR inside the cavity of CDs. The first conformation of γ-CD/ChR inclusion complex (γ-CD1/ChR) was identified to possess the highest affinity between host and guest molecule on the basis of binding energy calculated by employing Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) and umbrella sampling simulations. To further strengthen the claims of classical and biased MD studies, Our own N-layered Integrated molecular Orbital and Molecular mechanics (ONIOM) (wB97XD/6-311+g(d,p):pm7) calculations were performed on the selected inclusion complexes. The ONIOM based complexation energy reaffirmed that ChR had highest affinity for the γ-CD1 host molecule. Further, the non-covalent interaction analysis was conducted using Multiwfn software on QM-optimized inclusion complexes with wB97XD/6-311+G(d,p) model chemistry, revealing non-covalent interactions between ChR and CDs. This atomic level information helped us to gain better insights into critical atoms of ChR and CD that participated in intermolecular interactions and identify γ-CD as a suitable host molecule for improving the hydro-solubulity of ChR. The structural insights would help to derive new derivatives of γ-CD with better host capacity.
Collapse
Affiliation(s)
- Pramod Kumar
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
3
|
Araj SK, Szeleszczuk Ł. A Review on Cyclodextrins/Estrogens Inclusion Complexes. Int J Mol Sci 2023; 24:ijms24108780. [PMID: 37240133 DOI: 10.3390/ijms24108780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
This review focuses on the methods of preparation and biological, physiochemical, and theoretical analysis of the inclusion complexes formed between estrogens and cyclodextrins (CDs). Because estrogens have a low polarity, they can interact with some cyclodextrins' hydrophobic cavities to create inclusion complexes, if their geometric properties are compatible. For the last forty years, estrogen-CD complexes have been widely applied in several fields for various objectives. For example, CDs have been used as estrogen solubilizers and absorption boosters in pharmaceutical formulations, as well as in chromatographic and electrophoretic procedures for their separation and quantification. Other applications include the removal of the endocrine disruptors from environmental materials, the preparation of the samples for mass spectrometric analysis, or solid-phase extractions based on complex formation with CDs. The aim of this review is to gather the most important outcomes from the works related to this topic, presenting the results of synthesis, in silico, in vitro, and in vivo analysis.
Collapse
Affiliation(s)
- Szymon Kamil Araj
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Prabhu AAM, Madi F, Leila N, Kumar GSS, Sathiyaseelan K. Structural Aspects and Stability of Interactions between Phenyl-3,3'-Bis(Indolyl)Methanes and β-Cyclodextrin from Density Functional Theory. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | - Fatiha Madi
- Laboratory of Computational Chemistry and Nanostructures, Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, University of 08 Mai 1945, Guelma, Algeria
| | - Nouar Leila
- Laboratory of Computational Chemistry and Nanostructures, Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, University of 08 Mai 1945, Guelma, Algeria
| | - G. S. Suresh Kumar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - K. Sathiyaseelan
- Department of PG Chemistry, Aditanar College of Arts and Science, Tiruchendur, India
| |
Collapse
|
5
|
Chekroud H, Djazi F, Abd alaziz B, Horchani-Naifer K, Rachida Z, Malika R. Modeling and Optimisation of Comlexity by the β-Cyclodextrin of an Organic Pollutant Model: m-Methyl Red. CHEMISTRY & CHEMICAL TECHNOLOGY 2022. [DOI: 10.23939/chcht16.02.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies of cyclodextrin chemistry using quantum chemical methods are mainly adopted to investigate the formation of the inclusion complex causing changes in the physicochemical properties of the cyclodextrin guest. In this paper, we conducted a computational modeling study of the inclusion complexes of β-cyclodextrin (β-CD) with m-Methyl Red (m-MR) by using parametric method 6 (PM6), the semi empirical molecular orbital calculations and the natural bond orbital method (NBO). The inclusion process is carried out by maintaining the coordinates of the β-CD fixed and by displacing the guest molecule. The different relative positions between m-MR and β-CD are measured with respect to the distance between the reference atom (N) in the guest molecule and the origin of the coordinates from the equatorial plane of β-CD. The m-MR/β-CD (B) inclusion complex has a lower negative value of ΔG compared to another m-MR/β-CD (A) complex, highlighting the spontaneous behavior of the inclusion process. In addition, during the process of inclusion, the complexation energy is negative, which allows us to affirm that the complexation of m-MR in the β-CD is thermodynamically favorable. Among two directions A and B, the minimum energy generated from the PM6 was obtained in the orientation B and the guest molecule is partially encapsulated in the cavity of β-CD. In the NBO analysis, the stabilization energy is also usually used to characterize the hydrogen bond interaction between a lone pair (LP(Y)) of an atom Y and an anti-bonding orbital (BD٭(X-H)).
Collapse
|
6
|
Molecular modeling study of structures, Hirschfield surface, NBO, AIM, RDG, IGM and 1HNMR of thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex from QM calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Prema D, Thamaraiselvi S, Yamuna R. Encapsulation of N-phenyl p-phenylenediamine into β-CD: Spectral, molecular modelling studies and sensor application for detecting Fe2+ ion. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
The inclusion behavior of 8-Anilino-1-naphthalene sulfonate into Cucurbit[7]uril: A DFT approach. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Bouhadiba A, Rahali S, Belhocine Y, Allal H, Nouar L, Rahim M. Structural and energetic investigation on the host/guest inclusion process of benzyl isothiocyanate into β-cyclodextrin using dispersion-corrected DFT calculations. Carbohydr Res 2020; 491:107980. [DOI: 10.1016/j.carres.2020.107980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/29/2020] [Accepted: 03/08/2020] [Indexed: 01/08/2023]
|
10
|
Safia H, Ismahan L, Abdelkrim G, Mouna C, Leila N, Fatiha M. Density functional theories study of the interactions between host β-Cyclodextrin and guest 8-Anilinonaphthalene-1-sulfonate: Molecular structure, HOMO, LUMO, NBO, QTAIM and NMR analyses. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Wang Y, Xu X, Gu Y, Cheng Y, Cao F. Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv 2018; 15:687-701. [PMID: 29985660 DOI: 10.1080/17425247.2018.1496080] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Considering that the number of patients afflicted by posterior eye diseases is increasing, effective drug delivery is currently in high clinical demand. Topical administration has been identified as the preferred option, while sufferingfrom multiple barriers. The development of nanoparticle-based drug delivery system provides an option, which would enhance the drug permeability across the barriers and achieve the desired drug level in the targeted tissue. AREAS COVERED This review highlights the barrier to the posterior segment of the eye via topical administration. The up-to-date development of lipid nanoparticles, liposomes, emulsions, spanlastics, micelles, polymeric nanoparticles, layered double hydroxides (LDH), dendrimers, cyclodextrins(CDs), and prodrugs are summarized. Moreover, nanocarriers currently in clinical trials for posterior segment diseases have been discussed. EXPERT OPINION Topical nanoparticle-based drug delivery systems have demonstrated significant progress. An ideal formulation should prolong retention time on the surface, enhance drug permeability through the ocular tissues, and efficiently deliver drugs to the targeted site. To design the rational targeting nanoparticle-based drug delivery system, a better understanding of the distribution of transporters and receptors on the eye is required. Ultimately, there is an urgent need to develop targeting hybrid drug delivery systems with the combination of the advantages of several nanocarriers.
Collapse
Affiliation(s)
- Yanyan Wang
- a Department of Pharmaceutical, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Xiaoyue Xu
- a Department of Pharmaceutical, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Yan Gu
- a Department of Pharmaceutical, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Yanju Cheng
- b Department of Biologics R&D Center , Chia Tai Tianqing Pharmaceutical Group Co. Ltd , Nanjing , China
| | - Feng Cao
- a Department of Pharmaceutical, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
12
|
|
13
|
Bouhadiba A, Belhocine Y, Rahim M, Djilani I, Nouar L, Khatmi DE. Host-guest interaction between tyrosine and β-cyclodextrin: Molecular modeling and nuclear studies. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Messiad H, Yousfi T, Djemil R, Amira-Guebailia H. Modeling of the inclusive complexation of natural drug trans 3,5,3′,4′-tetrahydroxystilbene with β-cyclodextrin. CR CHIM 2017. [DOI: 10.1016/j.crci.2016.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Abdelmalek L, Fatiha M, Leila N, Mouna C, Nora M, Djameleddine K. Computational study of inclusion complex formation between carvacrol and β-cyclodextrin in vacuum and in water: Charge transfer, electronic transitions and NBO analysis. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.09.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|