1
|
Akhade SA, Singh N, Gutiérrez OY, Lopez-Ruiz J, Wang H, Holladay JD, Liu Y, Karkamkar A, Weber RS, Padmaperuma AB, Lee MS, Whyatt GA, Elliott M, Holladay JE, Male JL, Lercher JA, Rousseau R, Glezakou VA. Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review. Chem Rev 2020; 120:11370-11419. [PMID: 32941005 DOI: 10.1021/acs.chemrev.0c00158] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sustainable energy generation calls for a shift away from centralized, high-temperature, energy-intensive processes to decentralized, low-temperature conversions that can be powered by electricity produced from renewable sources. Electrocatalytic conversion of biomass-derived feedstocks would allow carbon recycling of distributed, energy-poor resources in the absence of sinks and sources of high-grade heat. Selective, efficient electrocatalysts that operate at low temperatures are needed for electrocatalytic hydrogenation (ECH) to upgrade the feedstocks. For effective generation of energy-dense chemicals and fuels, two design criteria must be met: (i) a high H:C ratio via ECH to allow for high-quality fuels and blends and (ii) a lower O:C ratio in the target molecules via electrochemical decarboxylation/deoxygenation to improve the stability of fuels and chemicals. The goal of this review is to determine whether the following questions have been sufficiently answered in the open literature, and if not, what additional information is required:(1)What organic functionalities are accessible for electrocatalytic hydrogenation under a set of reaction conditions? How do substitutions and functionalities impact the activity and selectivity of ECH?(2)What material properties cause an electrocatalyst to be active for ECH? Can general trends in ECH be formulated based on the type of electrocatalyst?(3)What are the impacts of reaction conditions (electrolyte concentration, pH, operating potential) and reactor types?
Collapse
Affiliation(s)
- Sneha A Akhade
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nirala Singh
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Juan Lopez-Ruiz
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jamie D Holladay
- TU München, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, D-84747 Garching, Germany
| | - Yue Liu
- TU München, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, D-84747 Garching, Germany
| | - Abhijeet Karkamkar
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Robert S Weber
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Asanga B Padmaperuma
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mal-Soon Lee
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Greg A Whyatt
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Michael Elliott
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Johnathan E Holladay
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jonathan L Male
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,TU München, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, D-84747 Garching, Germany
| | - Roger Rousseau
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vassiliki-Alexandra Glezakou
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
2
|
Raptis V, Dimitroulis C, Raptis T. Just type polyana and press Enter: a post-processing application designed with simplicity of use in mind. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1603379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Vasilios Raptis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Christos Dimitroulis
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece
| | - Theophanes Raptis
- Computational Applications Group, Division of Applied Technologies, National Centre for Science and Research ‘Demokritos’, Athens, Greece
| |
Collapse
|
3
|
Petris PC, Anogiannakis SD, Tzounis PN, Theodorou DN. Thermodynamic Analysis of n-Hexane-Ethanol Binary Mixtures Using the Kirkwood-Buff Theory. J Phys Chem B 2019; 123:247-257. [PMID: 30516991 DOI: 10.1021/acs.jpcb.8b10425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A complete thermodynamic analysis of mixtures consisting of molecules with complex chemical constitution can be rather demanding. The Kirkwood-Buff theory of solutions allows the estimation of thermodynamic properties, which cannot be directly extracted from atomistic simulations, such as the Gibbs energy of mixing (Δmix G). In this work, we perform molecular dynamics simulations of n-hexane-ethanol binary mixtures in the liquid state under two temperature-pressure conditions and at various mole fractions. On the basis of the recently published methodology of Galata [ Fluid Phase Equilib. 2018 , 470 , 25 - 37 ] , we first calculate the Kirkwood-Buff integrals in the isothermal-isobaric ( NpT) ensemble, identifying how system size affects their estimation. We then extract the activity coefficients, excess Gibbs energy, excess enthalpy, and excess entropy for the n-hexane-ethanol binary mixtures we simulate. We employ two approaches for quantifying composition fluctuations: one based on counting molecular centers of mass and a second one based on counting molecular segments. Results from the two approaches are practically indistinguishable. We compare our results against predictions of vapor-liquid equilibria obtained in a previous simulation work using the same force field, as well as with experimental data, and find very good agreement. In addition, we develop a simple methodology to identify the hydrogen bonds between ethanol molecules and analyze their effects on mixing properties.
Collapse
Affiliation(s)
- Panagiotis C Petris
- School of Chemical Engineering , National Technical University of Athens , GR 15780 Athens , Greece
| | - Stefanos D Anogiannakis
- School of Chemical Engineering , National Technical University of Athens , GR 15780 Athens , Greece
| | | | - Doros N Theodorou
- School of Chemical Engineering , National Technical University of Athens , GR 15780 Athens , Greece
| |
Collapse
|
4
|
Cao J, Liu K, Zhang A, Yan W, Zheng Y, Zeng Q. 1H-NMR and viscosity studies of hydrogen bonding of Chinese rice wine. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1473497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jingjing Cao
- School of Food Science and Engineering, HFUT, Anhui, PR China
- Engineering Research Center of Bio-process, Ministry of Education, HFUT, Anhui, PR China
| | - Kun Liu
- School of Food Science and Engineering, HFUT, Anhui, PR China
- Engineering Research Center of Bio-process, Ministry of Education, HFUT, Anhui, PR China
| | - Aona Zhang
- School of Food Science and Engineering, HFUT, Anhui, PR China
- Engineering Research Center of Bio-process, Ministry of Education, HFUT, Anhui, PR China
| | - Wanghui Yan
- School of Food Science and Engineering, HFUT, Anhui, PR China
- Engineering Research Center of Bio-process, Ministry of Education, HFUT, Anhui, PR China
| | - Yue Zheng
- School of Food Science and Engineering, HFUT, Anhui, PR China
- Engineering Research Center of Bio-process, Ministry of Education, HFUT, Anhui, PR China
| | - Qingmei Zeng
- School of Food Science and Engineering, HFUT, Anhui, PR China
- Engineering Research Center of Bio-process, Ministry of Education, HFUT, Anhui, PR China
| |
Collapse
|