1
|
Tang K, Chen Y, Tang S, Wu X, Zhao P, Fu J, Lei H, Yang Z, Zhang Z. A smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor for visual detection of mercury ions and l-penicillamine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159073. [PMID: 36179841 DOI: 10.1016/j.scitotenv.2022.159073] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Establishment of a rapid, sensitive, visual, accurate and low-cost fluorescence detection system to detect multiple targets was of great significance in food safety evaluation, ecological environment monitoring and human health monitoring. In this work, a smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor was proposed based on metal-organic framework (NH2-MIL-101(Fe)) and CdTe quantum dots (CdTe QDs) for visual detection of mercury ions (Hg2+) and L-penicillamine (L-PA), in which NH2-MIL-101(Fe) was used as the reference signal and CdTe QDs was used as the response signal. The down-conversion fluorescence system at excitation wavelength of 300 nm (ex: 330 nm) was used to detect Hg2+ and L-PA, in which the detection limit of Hg2+ was 0.053 nM with the fluorescence color changed from green to blue, and the detection limit of L-PA was 1.10 nM with the fluorescence color changed from blue to green. Meanwhile, the up-conversion fluorescence system at excitation wavelength of 700 nm (ex: 700 nm) was used to detect Hg2+ and L-PA. The detection limits of Hg2+ and L-PA were 0.11 nM and 2.93 nM, respectively. The detection of Hg2+ and L-PA were also carried out based on the color extraction RGB values identified by the smartphone with a detection limit of 0.091 nM for Hg2+ and 8.97 nM for L-PA. In addition, the concentrations of Hg2+ and L-PA were evaluated by three-dimensional dynamic analysis in complex environments. The smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor system provides a new strategy for detection Hg2+ and L-PA in food safety evaluation, environmental monitoring and human health monitoring.
Collapse
Affiliation(s)
- Kangling Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Yu Chen
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Sisi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Xiaodan Wu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Jinli Fu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Huibin Lei
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; School of Pharmaceutical Sciences, Jishou University, Jishou 416000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
2
|
Zhang Y, Wang HY, He XW, Li WY, Zhang YK. Homochiral fluorescence responsive molecularly imprinted polymer: Highly chiral enantiomer resolution and quantitative detection of L-penicillamine. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125249. [PMID: 33548789 DOI: 10.1016/j.jhazmat.2021.125249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
In this work, we innovatively synthesized homochiral fluorescence nano molecularly imprinted polymers (D-MIP) with dual affinity (metal ion affinity and homochiral affinity) for the specific separation and detection of L-penicillamine (L-PA), which is a core-shell structure with a SiO2-covered CDs core and an imprinted layer with L-PA cavities. A switch for fluorescence response was built by chelating grafted Cu2+, what's more, the imprinted L-PA was pre immobilized by Cu2+ to form the directional imprinting with predetermined spatial structure. More importantly, the homochiral affinity of D-galactose in homochiral molecularly imprinted polymers (D-MIP) greatly enhanced the selective adsorption of L-PA, and D-MIP showed a high selectivity factor (α) of 3.45, which is 1.9 times that of the non-homochiral molecularly imprinted polymers (MIP). Meanwhile, D-MIP exhibited a high enantiomeric excess (ee) value of 56% for separation of racemic PA. Additionally, a high sensitive and selective method was established for the detection of L-PA.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Hai-Yan Wang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
3
|
Liu L, Zhang Q, Li F, Wang M, Sun J, Zhu S. Fluorescent DNA-templated silver nanoclusters for highly sensitive detection of D-penicillamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119584. [PMID: 33636492 DOI: 10.1016/j.saa.2021.119584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Herein, fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) with red emission were synthesized and utilized as novel probe to detect D-penicillamine (D-Pen) for the first time. D-Pen molecules contain a thiol which can combine with Ag to form a non-fluorescent ground state complex, inducing the aggregation of DNA-AgNCs followed by the fluorescence quenching. The quenching mechanism is well-studied and found to be a static quenching process. This method can detect D-Pen in the range of 0.025-0.7 μM with the detection limit as low as 8 nM, which is 1-3 orders of magnitude more sensitive than those based on other fluorescent nanoprobes. More importantly, the preparation procedure for DNA-AgNCs is fast and without the requirement of heavy metal ions. Thus, this detection strategy is time-saving and eco-friendly. Satisfactory recoveries have been acquired for monitoring D-Pen in human serum samples and pharmaceutical samples owing to the high sensitivity.
Collapse
Affiliation(s)
- Lingyuan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qianyi Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Feng Li
- Qingdao Special Service Men Recuperation Center of PLA Navy, Qingdao 266071, China
| | - Mei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Shuyun Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
4
|
Wang Q, Li L, Wu T, Kong X, Ma Q, Ma C. A graphene quantum dots-Pb 2+ based fluorescent switch for selective and sensitive determination of D-penicillamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117924. [PMID: 31839577 DOI: 10.1016/j.saa.2019.117924] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Taking consideration of metal-induced fluorescence quenching and excellent coordination effect of D-penicillamine (D-PA), a graphene quantum dots (GQDs)-based fluorescent switch for D-PA detection was designed and established firstly with the help of lead ions. GQDs obtained from citric acids made them rich in carboxyl and hydroxyl groups, giving GQDs the ability to combine with lead ions. As anticipated, the fluorescence intensity was quenched by Pb2+ through electron transfer process. Further, the addition of D-PA effectively recovered the fluorescence due to the departure of Pb2+ from GQDs aroused by the strong coordination between D-PA and Pb2+. Thus, a fluorescent switch was activated for D-PA detection. The fluorescence recovery efficiencies were found to be proportional to the concentration of D-PA in the range of 0.6-50 μmol L-1 and the detection limit was 0.47 μmol L-1. The real sample detection was performed in human urea sample and satisfactory recoveries of 96.84%-102.13% were obtained. The GQDs-Pb2+ based fluorescent switch sensing method was firstly established with low detection limit and wide linear range, making it a supplement and improvement for D-PA detection.
Collapse
Affiliation(s)
- Qi Wang
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China.
| | - Lingfang Li
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China
| | - Tingxuan Wu
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China
| | - Xiangpeng Kong
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China
| | - Qingguo Ma
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China
| | - Chunlei Ma
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China.
| |
Collapse
|
5
|
Copper nanocluster‐based fluorescence enhanced determination of
d
‐penicillamine. LUMINESCENCE 2019; 34:767-773. [DOI: 10.1002/bio.3672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/23/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022]
|
6
|
Fluorescent MUA-stabilized Au nanoclusters for sensitive and selective detection of penicillamine. Anal Bioanal Chem 2018; 410:2629-2636. [DOI: 10.1007/s00216-018-0936-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023]
|
7
|
Carbon quantum dots originated from chitin nanofibers as a fluorescent chemoprobe for drug sensing. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Durán GM, Benavidez TE, Contento AM, Ríos A, García CD. Analysis of penicillamine using Cu-modified graphene quantum dots synthesized from uric acid as single precursor. J Pharm Anal 2017; 7:324-331. [PMID: 29404056 PMCID: PMC5790703 DOI: 10.1016/j.jpha.2017.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 01/14/2023] Open
Abstract
A simple methodology was developed to quantify penicillamine (PA) in pharmaceutical samples, using the selective interaction of the drug with Cu-modified graphene quantum dots (Cu-GQDs). The proposed strategy combines the advantages of carbon dots (over other nanoparticles) with the high affinity of PA for the proposed Cu-GQDs, resulting in a significant and selective quenching effect. Under the optimum conditions for the interaction, a linear response (in the 0.10–7.50 µmol/L PA concentration range) was observed. The highly fluorescent GQDs used were synthesized using uric acid as single precursor and then characterized by high resolution transmission electron microscopy, Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, fluorescence, and absorption spectroscopy. The proposed methodology could also be extended to other compounds, further expanding the applicability of GQDs.
Collapse
Affiliation(s)
- Gema M Durán
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Av., Ciudad Real E 13004, Spain.,IRICA (Regional Institute of Applied Scientific Research), Camilo José Cela Av., E 13004 Ciudad Real, Spain
| | - Tomás E Benavidez
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, SC 29634, USA
| | - Ana M Contento
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Av., Ciudad Real E 13004, Spain
| | - Angel Ríos
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Av., Ciudad Real E 13004, Spain
| | - Carlos D García
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, SC 29634, USA
| |
Collapse
|
9
|
Mahajan PG, Kolekar GB, Patil SR. Recognition of D-Penicillamine Using Schiff Base Centered Fluorescent Organic Nanoparticles and Application to Medicine Analysis. J Fluoresc 2017; 27:829-839. [DOI: 10.1007/s10895-016-2019-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|