1
|
Patel D, Tripathi N, Vaswani P, Pérez-Sánchez G, Bhatia D, Kuperkar K, Coutinho JAP, Bahadur P. Role of Unimers to Polymersomes Transition in Pluronic Blends for Controlled and Designated Drug Conveyance. J Phys Chem B 2024; 128:6151-6166. [PMID: 38845485 DOI: 10.1021/acs.jpcb.4c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
This study investigates the nanoscale self-assembly from mixtures of two symmetrical poly(ethylene oxide)-poly(propylene oxide)-pol(ethylene oxide) (PEO-PPO-PEO) block copolymers (BCPs) with different lengths of PEO blocks and similar PPO blocks. The blended BCPs (commercially known as Pluronic F88 and L81, with 80 and 10% PEO, respectively) exhibited rich phase behavior in an aqueous solution. The relative viscosity (ηrel) indicated significant variations in the flow behavior, ranging from fluidic to viscous, thereby suggesting a possible micellar growth or morphological transition. The tensiometric experiments provided insight into the intermolecular hydrophobic interactions at the liquid-air interface favoring the surface activity of mixed-system micellization. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) revealed the varied structural morphologies of these core-shell mixed micelles and polymersomes formed under different conditions. At a concentration of ≤5% w/v, Pluronic F88 exists as molecularly dissolved unimers or Gaussian chains. However, the addition of the very hydrophobic Pluronic L81, even at a much lower (<0.2%) concentration, induced micellization and promoted micellar growth/transition. These results were further substantiated through molecular dynamics (MD) simulations, employing a readily transferable coarse-grained (CG) molecular model grounded in the MARTINI force field with density and solvent-accessible surface area (SASA) profiles. These findings proved that F88 underwent micellar growth/transition in the presence of L81. Furthermore, the potential use of these Pluronic mixed micelles as nanocarriers for the anticancer drug quercetin (QCT) was explored. The spectral analysis provided insight into the enhanced solubility of QCT through the assessment of the standard free energy of solubilization (ΔG°), drug-loading efficiency (DL%), encapsulation efficiency (EE%), and partition coefficient (P). A detailed optimization of the drug release kinetics was presented by employing various kinetic models. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay, a frequently used technique for assessing cytotoxicity in anticancer research, was used to gauge the effectiveness of these QCT-loaded mixed nanoaggregates.
Collapse
Affiliation(s)
- Divya Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Nitumani Tripathi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Payal Vaswani
- Biomedical Engineering, Indian Institute of Technology Gandhinagar (IITGn), Palaj, Gandhinagar 382 355, Gujarat, India
| | - Germán Pérez-Sánchez
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-1933, Portugal
| | - Dhiraj Bhatia
- Biomedical Engineering, Indian Institute of Technology Gandhinagar (IITGn), Palaj, Gandhinagar 382 355, Gujarat, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-1933, Portugal
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395 007, Gujarat, India
| |
Collapse
|
2
|
Anilkumar A, Dutta Choudhury S. Self-assembly of Reverse Poloxamine Induced by Saccharide Excipients: Insights from Fluorescence. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Patel D, Tripathi N, Ray D, Aswal VK, Kuperkar K, Bahadur P. Self-assembly generation triggered in highly hydrophilic Pluronics® by sugars/ polyols. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
4
|
Patel D, Bhojani AK, Ray D, Singh DK, Bhattacharjee S, Seth D, Aswal VK, Kuperkar K, Bahadur P. Glucose-induced self-assembly and phase separation in hydrophilic triblock copolymers and the governing mechanism. Phys Chem Chem Phys 2022; 24:21141-21156. [PMID: 36039741 DOI: 10.1039/d2cp01909d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ethylene oxide, EO)-poly(propylene oxide, PO)-poly(ethylene oxide, EO)-based triblock copolymers (BCPs) with 80% hydrophilicity stay molecularly dissolved as Gaussian chains at ambient temperature, even at fairly high concentrations (>5 %w/v). This study presents the plausible micellization behaviour of such very-hydrophilic Pluronics® - F38, F68, F88, F98, and F108 - incited upon the addition of glucose at low concentrations and temperatures. The outcomes obtained from phase behaviour and scattering studies are described. At temperatures near to ambient temperature, these BCPs form micelles with a central core made of a PO block, surrounded by a corona of highly hydrated EO chains. The phase transitions in these hydrophilic Pluronics® in the presence of glucose are demonstrated via the dehydration of the copolymer coil, leading to a decrease in the I1/I3 ratio, as determined using fluorescence spectroscopy. The temperature-dependent cloud point (CP) showed a marked decrease with an increase in the PO molecular weight and also in the presence of glucose. The change in solution relative viscosity (ηrel) caused by glucose is due to the enhanced dehydration of the EO block of the BCP amphiphile. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) investigations suggested that the dimensions of the hydrophobic core increase during the dehydration of the EO-PO blocks upon a temperature increase or after adding varying concentrations of glucose, thereby resulting in a micellar shape transition. It has been observed that added glucose influences the phase behaviour of BCPs in an analogous way to the influence of temperature. Also, plausible interactions between the EO-PO blocks and glucose were suggested based on the evaluated optimized descriptors obtained from a computational simulation approach. In addition, the core-shell blended micelles obtained using these BCPs are successfully utilized for drug (curcumin, Cur) solubilization based on the observed peak intensities from UV-visible spectroscopy. The loading of Cur into glucose-containing and glucose-free hydrophilic Pluronic® micelles shows how the radius of the micellar core (Rc) increases in the presence of glucose, thereby indicating Cur solubility enhancement for the Pluronic® micelles. Various kinetics models were employed, demonstrating a drug release profile that enables this approach to be used as an ideal platform for drug delivery.
Collapse
Affiliation(s)
- Divya Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat-395 007, Gujarat, India.
| | - Amit K Bhojani
- Department of Basic Sciences, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad-380 026, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, Maharashtra, India
| | - Dheeraj K Singh
- Department of Basic Sciences, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad-380 026, India
| | - Sanyukta Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Patna (IITP), Bihta, Patna, 801 106, Bihar, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna (IITP), Bihta, Patna, 801 106, Bihar, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, Maharashtra, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat-395 007, Gujarat, India.
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat-395 007, Gujarat, India
| |
Collapse
|
5
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
6
|
Chakrabarti C, Pillai SA, Kuperkar K, Ray D, Aswal VK, Bahadur P. Phase behaviour and characterization of micelles of graft copolymer Soluplus® and non-ionic surfactant Solutol® HS15: A detailed comparison in the presence of additives. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Ben Henda M. Effect of Organic Solvent on (EO)78(PO)30(EO)78 F68 Tri-Block Copolymer: Viscosity and Dynamic Light Scattering Measurements. J MACROMOL SCI B 2022. [DOI: 10.1080/00222348.2021.2022281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Ben Henda
- Physics Department, College of Science, Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
- Physics Laboratory of Soft Matter and Electromagnetic Modelling, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
8
|
Giuliano E, Fresta M, Cosco D. Development and characterization of poloxamine 908-hydrogels for potential pharmaceutical applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Carolin C F, Kumar PS, Ngueagni PT. A review on new aspects of lipopeptide biosurfactant: Types, production, properties and its application in the bioremediation process. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124827. [PMID: 33352424 DOI: 10.1016/j.jhazmat.2020.124827] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Nowadays, the worldwide search regarding renewable products from natural resources is increasing due to the toxicity of chemical counterparts. Biosurfactants are surface-active compounds that contain several physiological functions that are used in industries like food, pharmaceutical, petroleum and agriculture. Microbial lipopeptides have gained more attention among the researchers for their low toxicity, efficient action and good biodegradability when compared with other surfactants. Because of their versatile properties, lipopeptide compounds are utilized in the remediation of organic and inorganic pollutants. This review presented a depth evaluation of lipopeptide surfactants in the bioremediation process and their properties to maintain a sustainable environment. Lipopeptide can acts as a replacement to chemical surfactants only if they meet industrial-scale production and low-cost substrates. This review also demonstrated the production of a lipopeptide biosurfactant from a low-cost substrate and depicted plausible techniques to manage the substrate residues to determine its ability in the different applications particularly in the bioremediation process.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India.
| | - P Tsopbou Ngueagni
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India; Laboratoire de Chimie Inorganique Appliquée, Faculté des Sciences, Université de Yaoundé I, B.P: 812, Yaoundé, Cameroon
| |
Collapse
|
10
|
Kumar H, Katal A. Thermodynamic analysis of micelles formation of anionic surfactant SDS in the presence of aqueous and aqueous solution of ionic liquid 1‐butyl‐3‐methylimidazolium chloride. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Harsh Kumar
- Department of Chemistry Dr B R Ambedkar National Institute of Technology Jalandhar India
| | - Arjuna Katal
- Department of Chemistry Dr B R Ambedkar National Institute of Technology Jalandhar India
| |
Collapse
|
11
|
Saponin Micelles Lead to High Mucosal Permeation and In Vivo Efficacy of Solubilized Budesonide. Pharmaceutics 2020; 12:pharmaceutics12090847. [PMID: 32899549 PMCID: PMC7558607 DOI: 10.3390/pharmaceutics12090847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
Due to fast nasal mucociliary clearance, only the dissolved drug content can effectively permeate the mucosa and be pharmaceutically active after intranasal application of suspensions. Therefore, the aim of this study was to increase the budesonide concentration in solution of a nasal spray formulation. Budesonide, a highly water-insoluble corticosteroid, was successfully solubilized using a micellar formulation comprising escin, propylene glycol and dexpanthenol in an aqueous buffered environment (“Budesolv”). A formulation based on this micellar system was well-tolerated in the nasal cavity as shown in a good laboratory practice (GLP) local tolerance study in rabbits. Ex vivo permeation studies into porcine nasal mucosa revealed a faster and more efficient absorption. Budesolv with 300 µg/mL solubilized budesonide resulted in a budesonide concentration of 42 µg/g tissue after only 15 min incubation. In comparison, incubation with the marketed product Rhinocort® aqua 64 (1.28 mg/mL budesonide as suspension) led to 15 µg/g tissue. The in vivo tumor-necrosis-factor (TNF)-α secretion in an acute lung inflammation mouse model was significantly reduced (p < 0.001) following a prophylactic treatment with Budesolv compared to Rhinocort® aqua 64. Successful treatment 15 min after the challenge was only possible with Budesolv (40% reduction of TNF-α, p = 0.0012) suggesting a faster onset of action. The data reveal that solubilization based on saponin micelles presents an opportunity for the development of products containing hardly soluble substances that result in a faster onset and a better topical treatment effect.
Collapse
|
12
|
Kancharla S, Zoyhofski NA, Bufalini L, Chatelais BF, Alexandridis P. Association between Nonionic Amphiphilic Polymer and Ionic Surfactant in Aqueous Solutions: Effect of Polymer Hydrophobicity and Micellization. Polymers (Basel) 2020; 12:polym12081831. [PMID: 32824165 PMCID: PMC7464887 DOI: 10.3390/polym12081831] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/02/2023] Open
Abstract
The interaction in aqueous solutions of surfactants with amphiphilic polymers can be more complex than the surfactant interactions with homopolymers. Interactions between the common ionic surfactant sodium dodecyl sulfate (SDS) and nonionic amphiphilic polymers of the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) type have been probed utilizing a variety of experimental techniques. The polymer amphiphiles studied here are Pluronic F127 (EO100PO65EO100) and Pluronic P123 (EO19PO69EO19), having the same length PPO block but different length PEO blocks and, accordingly, very different critical micellization concentrations (CMC). With increasing surfactant concentration in aqueous solutions of fixed polymer content, SDS interacts with unassociated PEO-PPO-PEO molecules to first form SDS-rich SDS/Pluronic assemblies and then free SDS micelles. SDS interacts with micellized PEO-PPO-PEO to form Pluronic-rich SDS/Pluronic assemblies, which upon further increase in surfactant concentration, break down and transition into SDS-rich SDS/Pluronic assemblies, followed by free SDS micelle formation. The SDS-rich SDS/Pluronic assemblies exhibit polyelectrolyte characteristics. The interactions and mode of association between nonionic macromolecular amphiphiles and short-chain ionic amphiphiles are affected by the polymer hydrophobicity and its concentration in the aqueous solution. For example, SDS binds to Pluronic F127 micelles at much lower concentrations (~0.01 mM) when compared to Pluronic P123 micelles (~1 mM). The critical association concentration (CAC) values of SDS in aqueous PEO-PPO-PEO solutions are much lower than CAC in aqueous PEO homopolymer solutions.
Collapse
|
13
|
Gawali SL, Barick KC, Aswal VK, Basu M, Hassan PA. Altering the X-ray Scattering Contrast of Triton X-100 Micelles and Its Trapping in a Supercooled Solvent. J Phys Chem B 2020; 124:3418-3427. [PMID: 32239938 DOI: 10.1021/acs.jpcb.9b11952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of core-shell micelles formed by nonionic surfactant Triton X-100 (TX-100) in a supercooled glucose-urea melt is investigated by contrast variation small-angle X-ray scattering (SAXS), small angle neutron scattering (SANS), and HR-TEM. Cooling a molten mixture of glucose-urea (weight ratio of 3:2) to room temperature yields a supercooled solvent without crystallization that can be used for trapping micelles of TX-100. By use of a combination of water and glucose-urea mixture at different proportions as solvent for micellization, the scattering length density (SLD) of the solvent can be tuned to match the shell contrast of the micelles. A systematic analysis of SAXS and SANS data with different SLD of solvent permits a quantitative evaluation of electron density profile of micelles in different matrices. The core of TX-100 micelles shows significant swelling in glucose-urea melt, as compared to that in water. The dimension and morphology of micelles were evaluated by scattering techniques and HR-TEM. Dynamic light scattering (DLS) studies suggest that, unlike micelles in water, the diffusion of micelles in supercooled glucose-urea melt decreased by several orders of magnitude.
Collapse
Affiliation(s)
- Santosh L Gawali
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.,Training School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Kanhu C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.,Training School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Vinod K Aswal
- Training School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.,Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - M Basu
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.,Training School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Puthusserickal A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.,Training School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
14
|
Djekic L, Čalija B, Medarević Đ. Gelation behavior, drug solubilization capacity and release kinetics of poloxamer 407 aqueous solutions: The combined effect of copolymer, cosolvent and hydrophobic drug. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Jahan R, Bodratti AM, Tsianou M, Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv Colloid Interface Sci 2020; 275:102061. [PMID: 31767119 DOI: 10.1016/j.cis.2019.102061] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/29/2022]
Abstract
Biosurfactants comprise a wide array of amphiphilic molecules synthesized by plants, animals, and microbes. The synthesis route dictates their molecular characteristics, leading to broad structural diversity and ensuing functional properties. We focus here on low molecular weight (LMW) and high molecular weight (HMW) biosurfactants of microbial origin. These are environmentally safe and biodegradable, making them attractive candidates for applications spanning cosmetics to oil recovery. Biosurfactants spontaneously adsorb at various interfaces and self-assemble in aqueous solution, resulting in useful physicochemical properties such as decreased surface and interfacial tension, low critical micellization concentrations (CMCs), and ability to solubilize hydrophobic compounds. This review highlights the relationships between biosurfactant molecular composition, structure, and their interfacial behavior. It also describes how environmental factors such as temperature, pH, and ionic strength can impact physicochemical properties and self-assembly behavior of biosurfactant-containing solutions and dispersions. Comparison between biosurfactants and their synthetic counterparts are drawn to illustrate differences in their structure-property relationships and potential benefits. Knowledge of biosurfactant properties organized along these lines is useful for those seeking to formulate so-called green or natural products with novel and useful properties.
Collapse
|
16
|
Kancharla S, Canales E, Alexandridis P. Perfluorooctanoate in Aqueous Urea Solutions: Micelle Formation, Structure, and Microenvironment. Int J Mol Sci 2019; 20:E5761. [PMID: 31744078 PMCID: PMC6888096 DOI: 10.3390/ijms20225761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022] Open
Abstract
Fluorinated surfactants are used in a wide range of applications that involve aqueous solvents incorporating various additives. The presence of organic compounds such as urea is expected to affect the self-assembly of fluorinated surfactants, however, very little is known about this. We investigated the effect of urea on the micellization in water of the common fluorinated surfactant ammonium perfluorooctanoate (APFO), and on the structure and microenvironment of the micelles that APFO forms. Addition of urea to aqueous APFO solution decreased the critical micellization concentration (CMC) and increased the counterion dissociation. The observed increase in surface area per APFO headgroup and decrease in packing density at the micelle surface suggest the localization of urea at the micelle surface in a manner that reduces headgroup repulsions. Micropolarity data further support this picture. The results presented here indicate that significant differences exist between urea effects on fluorinated surfactant and on hydrocarbon surfactant micellization in aqueous solution. For example, the CMC of sodium dodecyl sulfate (SDS) increased with urea addition, while the increase in surface area per headgroup and packing density of SDS with urea addition are much lower than those observed for APFO. This study informs fluorinated surfactant fate and transport in the environment, and also applications involving aqueous media in which urea or similar additives are present.
Collapse
Affiliation(s)
| | | | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (S.K.); (E.C.)
| |
Collapse
|
17
|
The Controlled Release and Anti-Inflammatory Activity of a Tetramethylpyrazine-Loaded Thermosensitive Poloxamer Hydrogel. Pharm Res 2019; 36:52. [DOI: 10.1007/s11095-019-2580-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/22/2019] [Indexed: 11/25/2022]
|
18
|
He Z, Ma Y, Alexandridis P. Comparison of ionic liquid and salt effects on the thermodynamics of amphiphile micellization in water. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opin Drug Deliv 2018; 15:1085-1104. [DOI: 10.1080/17425247.2018.1529756] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Andrew M. Bodratti
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| |
Collapse
|
20
|
Bodratti AM, Alexandridis P. Formulation of Poloxamers for Drug Delivery. J Funct Biomater 2018; 9:E11. [PMID: 29346330 PMCID: PMC5872097 DOI: 10.3390/jfb9010011] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 12/26/2022] Open
Abstract
Poloxamers, also known as Pluronics®, are block copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), which have an amphiphilic character and useful association and adsorption properties emanating from this. Poloxamers find use in many applications that require solubilization or stabilization of compounds and also have notable physiological properties, including low toxicity. Accordingly, poloxamers serve well as excipients for pharmaceuticals. Current challenges facing nanomedicine revolve around the transport of typically water-insoluble drugs throughout the body, followed by targeted delivery. Judicious design of drug delivery systems leads to improved bioavailability, patient compliance and therapeutic outcomes. The rich phase behavior (micelles, hydrogels, lyotropic liquid crystals, etc.) of poloxamers makes them amenable to multiple types of processing and various product forms. In this review, we first present the general solution behavior of poloxamers, focusing on their self-assembly properties. This is followed by a discussion of how the self-assembly properties of poloxamers can be leveraged to encapsulate drugs using an array of processing techniques including direct solubilization, solvent displacement methods, emulsification and preparation of kinetically-frozen nanoparticles. Finally, we conclude with a summary and perspective.
Collapse
Affiliation(s)
- Andrew M Bodratti
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA.
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA.
| |
Collapse
|
21
|
Patidar P, Bahadur A. Modulating effect of different biomolecules and other additives on cloud point and aggregation of amphiphilic linear and starblock copolymer. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
He Z, Alexandridis P. Micellization Thermodynamics of Pluronic P123 (EO 20PO 70EO 20) Amphiphilic Block Copolymer in Aqueous Ethylammonium Nitrate (EAN) Solutions. Polymers (Basel) 2017; 10:E32. [PMID: 30966066 PMCID: PMC6414995 DOI: 10.3390/polym10010032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 01/14/2023] Open
Abstract
Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (commercially available as Pluronics or Poloxamers) can self-assemble into various nanostructures in water and its mixtures with polar organic solvents. Ethylammonium nitrate (EAN) is a well-known protic ionic liquid that is expected to affect amphiphile self-assembly due to its ionic nature and hydrogen bonding ability. By proper design of isothermal titration calorimetry (ITC) experiments, we determined the enthalpy and other thermodynamic parameters of Pluronic P123 (EO20PO70EO20) micellization in aqueous solution at varied EAN concentration. Addition of EAN promoted micellization in a manner similar to increasing temperature, e.g., the addition of 1.75 M EAN lowered the critical micelle concentration (CMC) to the same extent as a temperature increase from 20 to 24 °C. The presence of EAN disrupts the water solvation around the PEO-PPO-PEO molecules through electrostatic interactions and hydrogen bonding, which dehydrate PEO and promote micellization. At EAN concentrations lower than 1 M, the PEO-PPO-PEO micellization enthalpy and entropy increase with EAN concentration, while both decrease above 1 M EAN. Such a change can be attributed to the formation by EAN of semi-ordered nano-domains with water at higher EAN concentrations. Pyrene fluorescence suggests that the polarity of the mixed solvent decreased linearly with EAN addition, whereas the polarity of the micelle core remained unaltered. This work contributes to assessing intermolecular interactions in ionic liquid + polymer solutions, which are relevant to a number of applications, e.g., drug delivery, membrane separations, polymer electrolytes, biomass processing and nanomaterial synthesis.
Collapse
Affiliation(s)
- Zhiqi He
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| |
Collapse
|
23
|
McCoy CP, Irwin NJ, Donnelly L, Jones DS, Hardy JG, Carson L. Anti-Adherent Biomaterials for Prevention of Catheter Biofouling. Int J Pharm 2017; 535:420-427. [PMID: 29170113 DOI: 10.1016/j.ijpharm.2017.11.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023]
Abstract
Medical device-associated infections present a leading global healthcare challenge, and effective strategies to prevent infections are urgently required. Herein, we present an innovative anti-adherent hydrogel copolymer as a candidate catheter coating with complementary hydrophobic drug-carrying and eluting capacities. The amphiphilic block copolymer, Poloxamer 188, was chemically-derivatized with methacryloyl moieties and copolymerized with the hydrogel monomer, 2-hydroxyethyl methacrylate. Performance of the synthesized copolymers was evaluated in terms of equilibrium swelling, surface water wettability, mechanical integrity, resistance to encrustation and bacterial adherence, and ability to control release of the loaded fluoroquinolone antibiotic, ofloxacin. The developed matrices were able to provide significant protection from fouling, with observed reductions of over 90% in both adherence of the common urinary pathogen Escherichia coli and encrusting crystalline deposits of calcium and magnesium salts relative to the commonly employed hydrogel, poly (hydroxyethyl methacrylate). Additionally, the release kinetics of a loaded hydrophobic drug could be readily tuned through facile manipulation of polymer composition. This combinatorial approach shows significant promise in the development of suitable systems for prevention of catheter-associated infections.
Collapse
Affiliation(s)
- Colin P McCoy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | - Nicola J Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Louise Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - David S Jones
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - John G Hardy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Louise Carson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
24
|
Khimani M, Tseng HW, Aswal VK, Chen LJ, Bahadur P. Salt-assisted microstructure evaluation of hydrophilic block copolymer F98: A thermal and scattering study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Tuning the self-assembly of EO-PO block copolymers and quercetin solubilization in the presence of some common pharmacuetical excipients: A comparative study on a linear triblock and a starblock copolymer. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Boonlai W, Tantishaiyakul V, Hirun N, Phaisan S, Uma T. The effect of the preservative methylparaben on the thermoresponsive gelation behavior of aqueous solutions of poloxamer 407. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Glucose triggered enhanced solubilisation, release and cytotoxicity of poorly water soluble anti-cancer drugs fromT1307 micelles. J Biotechnol 2017. [DOI: 10.1016/j.jbiotec.2017.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|