1
|
Sahoo S, Pal T, Mondal S, Ghanta KP, Bandyopadhyay S. Conformational Properties of Aβ Peptide Oligomers in Aqueous Ionic Liquid Solution: Insights from Molecular Simulation Studies. J Phys Chem B 2023; 127:10960-10973. [PMID: 38091356 DOI: 10.1021/acs.jpcb.3c05490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Alzheimer's disease is a progressive irreversible neurological disorder with abnormal extracellular deposition of amyloid β (Aβ) peptides in the brain. We have carried out atomistic molecular dynamics simulations to investigate the size-dependent conformational properties of aggregated Aβ oligomers of different orders, namely, pentamer [O(5)], decamer [O(10)], and hexadecamer [O(16)] in aqueous solutions containing the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). The calculations revealed reduced peptide conformational fluctuations in O(5) and O(10) in the presence of the IL. In contrast, the higher order oligomer [O(16)] has been found to exhibit greater structural distortion due to enhanced flexibilities of its peptide units in the presence of the IL. Based on the distributions of the solvent (water) and the cosolvent (IL) components, it is demonstrated that exchange of water by the IL ion pairs at the exterior surface of the oligomers primarily occurs beyond the first layer of surface-bound water molecules. Importantly, a reduced number of relatively weaker peptide salt bridges have been found in O(16) in binary water-IL solution as compared to the other two smaller-sized oligomers [O(5) and O(10)]. Such differential influence of the IL on peptide salt bridges results in less favorable binding free energies of peptide monomers to O(16), which leads to its greater structural distortion and reduced stability compared to those of O(5) and O(10).
Collapse
Affiliation(s)
- Subhadip Sahoo
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tamisra Pal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Guncheva M. Role of ionic liquids on stabilization of therapeutic proteins and model proteins. Protein J 2022; 41:369-380. [PMID: 35661292 DOI: 10.1007/s10930-022-10058-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
Abstract
Ionic liquids (ILs) exhibit potential as excipients to stabilize proteins in solutions. This mini-review is not a detailed reference book on ILs, rather a brief overview of the main achievements published in the literature on their effect on protein aggregation, unfolding, structural and thermal stability, and activity. The main focus of the manuscript is three widely studied groups of ionic liquids: imidazolium-, cholinium- and alkylammonium-based and their effect on the model and therapeutic proteins.
Collapse
Affiliation(s)
- Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 9, 1113, Sofia, Bulgaria.
| |
Collapse
|
3
|
Duong DV, Tran HV, Pathirannahalage SK, Brown SJ, Hassett M, Yalcin D, Meftahi N, Christofferson AJ, Greaves TL, Le TC. Machine learning investigation of viscosity and ionic conductivity of protic ionic liquids in water mixtures. J Chem Phys 2022; 156:154503. [PMID: 35459305 DOI: 10.1063/5.0085592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ionic liquids (ILs) are well classified as designer solvents based on the ease of tailoring their properties through modifying the chemical structure of the cation and anion. However, while many structure-property relationships have been developed, these generally only identify the most dominant trends. Here, we have used machine learning on existing experimental data to construct robust models to produce meaningful predictions across a broad range of cation and anion chemical structures. Specifically, we used previously collated experimental data for the viscosity and conductivity of protic ILs [T. L. Greaves and C. J. Drummond, Chem. Rev. 115, 11379-11448 (2015)] as the inputs for multiple linear regression and neural network models. These were then used to predict the properties of all 1827 possible cation-anion combinations (excluding the input combinations). These models included the effect of water content of up to 5 wt. %. A selection of ten new protic ILs was then prepared, which validated the usefulness of the models. Overall, this work shows that relatively sparse data can be used productively to predict physicochemical properties of vast arrays of ILs.
Collapse
Affiliation(s)
- Dung Viet Duong
- School of Engineering, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Hung-Vu Tran
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, USA
| | | | - Stuart J Brown
- School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Michael Hassett
- School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Dilek Yalcin
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Tu C Le
- School of Engineering, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| |
Collapse
|
4
|
Ivanov MY, Surovtsev NV, Fedin MV. Ionic liquid glasses: properties and applications. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Takekiyo T, Yamada N, Nakazawa CT, Amo T, Asano A, Yoshimura Y. Formation of α-synuclein aggregates in aqueous ethylammonium nitrate solutions. Biopolymers 2020; 111:e23352. [PMID: 32203628 DOI: 10.1002/bip.23352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/04/2023]
Abstract
The effect of adding ethylammonium nitrate (EAN), which is an ionic liquid (IL), on the aggregate formation of α-synuclein (α-Syn) in aqueous solution has been investigated. FTIR and Raman spectroscopy were used to investigate changes in the secondary structure of α-Syn and in the states of water molecules and EAN. The results presented here show that the addition of EAN to α-Syn causes the formation of an intermolecular β-sheet structure in the following manner: native disordered state → polyproline II (PPII)-helix → intermolecular β-sheet (α-Syn amyloid-like aggregates: α-SynA). Although cations and anions of EAN play roles in masking the charged side chains and PPII-helix-forming ability involved in the formation of α-SynA, water molecules are not directly related to its formation. We conclude that EAN-induced α-Syn amyloid-like aggregates form at hydrophobic associations in the middle of the molecules after masking the charged side chains at the N- and C-terminals of α-Syn.
Collapse
Affiliation(s)
- Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Natsuki Yamada
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Chikako T Nakazawa
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Taku Amo
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Atsushi Asano
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Yukihiro Yoshimura
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| |
Collapse
|
6
|
Dasari S, Mallik BS. Conformational dynamics of amyloid-β (16–22) peptide in aqueous ionic liquids. RSC Adv 2020; 10:33248-33260. [PMID: 35515066 PMCID: PMC9056671 DOI: 10.1039/d0ra06609e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 12/04/2022] Open
Abstract
Molecular dynamics simulations of amyloid-β (16–22) peptide dimer in water as well as at two different experimentally studied concentrations of hydrated ionic liquids (ILs), ethylammonium mesylate (EAM), ethylammonium nitrate (EAN), and triethylammonium mesylate (TEAM), were carried out employing an umbrella sampling method. We used the average Ψ angle of the peptide backbone as the reaction coordinate to observe the conformational changes of a peptide dimer. Secondary structural element values were calculated for the peptide dimer along the reaction coordinate to see the transition of the peptide dimer between β-sheet and α-helix conformations. We observe the β-sheet conformation as the global minimum on the free energy surfaces in both EAM and EAN ILs at both the concentrations and at a low concentration of TEAM. However, we observe α-helix conformation as the global minimum at a high concentration of TEAM. Our results are in good correlation with the experimental findings. We calculated the average number of intramolecular and intermolecular hydrogen bonds of α-helix and β-sheet conformations in all solutions, and they are in correlation with the secondary structure element values. To understand the peptide–IL interactions, atom–atom radial distribution functions of cation, anion, and water around amide oxygen and hydrogen atoms were calculated. The solvent-accessible surface area of the peptide dimer was calculated to understand the exposure of the peptide towards the solvent during conformational changes. Finally, van der Waals (vdW) and Coulomb interaction energies were calculated between peptide–cation, peptide–anion, and peptide–water to understand the stability of conformations in different concentrations. We find that the TEA cation has more vdW interaction energy compared to Coulomb interaction energy with peptide in 70% (w/w) TEAM, which mimics a membrane-like environment to induce α-helix conformation rather than β-sheet conformation. Molecular dynamics simulations of amyloid-β (16–22) peptide dimer at two different experimentally studied concentrations of hydrated ethylammonium mesylate, ethylammonium nitrate, and triethylammonium mesylate were carried out employing an umbrella sampling method.![]()
Collapse
Affiliation(s)
- Sathish Dasari
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy-502285
- India
| | - Bhabani S. Mallik
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy-502285
- India
| |
Collapse
|
7
|
Aggregation selectivity of amyloid
β
1‐11
peptide in aqueous ionic liquid solutions. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Takekiyo T, Miyazaki K, Watanabe Y, Uesugi Y, Tanaka S, Ishikawa Y, Yoshimura Y. Solubilization and recovery of heat-aggregated cytochrome c using alkylammonium nitrate. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Egorova KS, Ananikov VP. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
|
11
|
Takekiyo T, Yoshimura Y. Suppression and dissolution of amyloid aggregates using ionic liquids. Biophys Rev 2018; 10:853-860. [PMID: 29696571 DOI: 10.1007/s12551-018-0421-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/08/2018] [Indexed: 12/22/2022] Open
Abstract
Amyloid aggregates are composed of protein fibrils with a dominant β-sheet structure, are water-insoluble, and are involved in the pathogenesis of many neurodegenerative diseases. Development of pharmaceuticals to treat these diseases and the design of recovery agents for amyloid-type inclusion bodies require the successful suppression and dissolution of such aggregates. Since ionic liquids (ILs) are composed of both a cation and anion and are known to suppress protein aggregation and to dissolve water-insoluble compounds such as cellulose; they may also have potential use as suppression/dissolution agents for amyloid aggregates. In the following review, we present the suppression and dissolution effects of ILs on amyloid aggregates so far reported. The protein-IL affinity (the ability of ILs to interact with amyloid proteins) was found to be the biochemical basis for ILs' suppression of amyloid formation, and the hydrogen-bonding basicity of ILs might be the basis for their ability to dissolve amyloid aggregates. These findings present the potential of ILs to serve as novel pharmaceuticals to treat neurodegenerative diseases and as recovery agents for various amyloid aggregates.
Collapse
Affiliation(s)
- Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan.
| | - Yukihiro Yoshimura
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan
| |
Collapse
|