1
|
Xu N, Zuo J, Li C, Gao C, Guo M. Reconstruction and Analysis of a Genome-Scale Metabolic Model of Acinetobacter lwoffii. Int J Mol Sci 2024; 25:9321. [PMID: 39273268 PMCID: PMC11395192 DOI: 10.3390/ijms25179321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Acinetobacter lwoffii is widely considered to be a harmful bacterium that is resistant to medicines and disinfectants. A. lwoffii NL1 degrades phenols efficiently and shows promise as an aromatic compound degrader in antibiotic-contaminated environments. To gain a comprehensive understanding of A. lwoffii, the first genome-scale metabolic model of A. lwoffii was constructed using semi-automated and manual methods. The iNX811 model, which includes 811 genes, 1071 metabolites, and 1155 reactions, was validated using 39 unique carbon and nitrogen sources. Genes and metabolites critical for cell growth were analyzed, and 12 essential metabolites (mainly in the biosynthesis and metabolism of glycan, lysine, and cofactors) were identified as antibacterial drug targets. Moreover, to explore the metabolic response to phenols, metabolic flux was simulated by integrating transcriptomics, and the significantly changed metabolism mainly included central carbon metabolism, along with some transport reactions. In addition, the addition of substances that effectively improved phenol degradation was predicted and validated using the model. Overall, the reconstruction and analysis of model iNX811 helped to study the antimicrobial systems and biodegradation behavior of A. lwoffii.
Collapse
Affiliation(s)
- Nan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jiaojiao Zuo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Chenghao Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Basharat Z, Murtaza Z, Siddiqa A, Alnasser SM, Meshal A. Therapeutic target mapping from the genome of Kingella negevensis and biophysical inhibition assessment through PNP synthase binding with traditional medicinal compounds. Mol Divers 2024; 28:581-594. [PMID: 36645537 PMCID: PMC9842218 DOI: 10.1007/s11030-023-10604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Kingella negevensis belongs to the Neisseriaceae family. It is implied that it has significant virulence potential due to RTX toxin production, which can cause hemolysis. It usually colonizes the orophayrynx of pediatric population, along with Kingella kingae but has also been isolated from vagina. Todate no report on its drug targets is present, therefore putative therapeutic targets were identified from its genomic sequence data. Traditional Chinese (n > 36,000) and Indian medicinal compounds (n > 2000) were then screened against its pyridoxine 5'-phosphate synthase, a vital therapeutic target. Prioritized TCM compounds included ZINC02525131, ZINC33833737 and ZINC85486932, and Cadiyenol, 9,11,13-Octadecatrienoic acid and 6-Gingerol from Indian medicinal library. Molecular dynamics simulation of top compounds revealed ZINC02525131 as having best stability for 100 ns, compared to Cadiyenol. ADMET profiling was then done, along with physiologically based pharmacokinetic simulation of these compounds in a population of 200 individuals, for 12 h to see fate of the ingested compound. Additionally, the impact of these compounds in a population with cirrhosis and renal impairment was also simulated. We imply in light of all the studied parameters of safety and bioavailability, etc., that 6-Gingerol from Zingiber officinalis rhizome must be proceeded further for in vitro and in vivo testing for inhibition of K. negevensis.
Collapse
Affiliation(s)
- Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Zainab Murtaza
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aisha Siddiqa
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Alotaibi Meshal
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Albatin, Hafr Albatin, Saudi Arabia
| |
Collapse
|
3
|
Cheng S, Li Z, Bai X, Feng J, Su R, Song L, Yang H, Zhan X, Xia X, Lü X, Shi C. The biochemical characteristics of viable but nonculturable state Yersinia enterocolitica induced by lactic acid stress and its presence in food systems. Food Res Int 2023; 170:113024. [PMID: 37316087 DOI: 10.1016/j.foodres.2023.113024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The viable but nonculturable (VBNC) state is adopted by many foodborne pathogenic bacteria to survive in adverse conditions. This study found that lactic acid, a widely used food preservative, can induce Yersinia enterocolitica to enter a VBNC state. Y. enterocolitica treated with 2 mg/mL lactic acid completely lost culturability within 20 min, and 10.137 ± 1.693 % of the cells entered a VBNC state. VBNC state cells could be recovered (resuscitated) in tryptic soy broth (TSB), 5 % (v/v) Tween80-TSB, and 2 mg/mL sodium pyruvate-TSB. In the VBNC state of Y. enterocolitica induced by lactic acid, the intracellular adenosine triphosphate (ATP) concentration and various enzyme activities were decreased, and the reactive oxygen species (ROS) level was elevated, compared with uninduced cells. The VBNC state cells were significantly more resistant to heat and simulated gastric fluid than uninduced cells, but their ability to survive in a high-osmotic-pressure environment was significantly less than that of uninduced cells. The VBNC state cells induced by lactic acid changed from long rod-like to short rod-like, with small vacuoles at the cell edges; the genetic material was loosened and the density of cytoplasm was increased. The VBNC state cells had decreased ability to adhere to and invade Caco-2 (human colorectal adenocarcinoma) cells. The transcription levels of genes related to adhesion, invasion, motility, and resistance to adverse environmental stress were downregulated in VBNC state cells relative to uninduced cells. In meat-based broth, all nine tested strains of Y. enterocolitica entered the VBNC state after lactic acid treatment; among these strains, only VBNC state cells of Y. enterocolitica CMCC 52207 and Isolate 36 could not be recovered. Therefore, this study is a wake-up call for food safety problems caused by VBNC state pathogens induced by lactic acid.
Collapse
Affiliation(s)
- Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingqi Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116304, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Evidence on antimicrobial activity of essential oils and herbal extracts against Yersinia enterocolitica - A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Ashraf S, Ranaghan KE, Woods CJ, Mulholland AJ, Ul-Haq Z. Exploration of the structural requirements of Aurora Kinase B inhibitors by a combined QSAR, modelling and molecular simulation approach. Sci Rep 2021; 11:18707. [PMID: 34548506 PMCID: PMC8455585 DOI: 10.1038/s41598-021-97368-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/21/2021] [Indexed: 02/04/2023] Open
Abstract
Aurora kinase B plays an important role in the cell cycle to orchestrate the mitotic process. The amplification and overexpression of this kinase have been implicated in several human malignancies. Therefore, Aurora kinase B is a potential drug target for anticancer therapies. Here, we combine atom-based 3D-QSAR analysis and pharmacophore model generation to identify the principal structural features of acylureidoindolin derivatives that could potentially be responsible for the inhibition of Aurora kinase B. The selected CoMFA and CoMSIA model showed significant results with cross-validation values (q2) of 0.68, 0.641 and linear regression values (r2) of 0.971, 0.933 respectively. These values support the statistical reliability of our model. A pharmacophore model was also generated, incorporating features of reported crystal complex structures of Aurora kinase B. The pharmacophore model was used to screen commercial databases to retrieve potential lead candidates. The resulting hits were analyzed at each stage for diversity based on the pharmacophore model, followed by molecular docking and filtering based on their interaction with active site residues and 3D-QSAR predictions. Subsequently, MD simulations and binding free energy calculations were performed to test the predictions and to characterize interactions at the molecular level. The results suggested that the identified compounds retained the interactions with binding residues. Binding energy decomposition identified residues Glu155, Trp156 and Ala157 of site B and Leu83 and Leu207 of site C as major contributors to binding affinity, complementary to 3D-QSAR results. To best of our knowledge, this is the first comparison of WaterSwap field and 3D-QSAR maps. Overall, this integrated strategy provides a basis for the development of new and potential AK-B inhibitors and is applicable to other protein targets.
Collapse
Affiliation(s)
- Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Kara E Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Christopher J Woods
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
6
|
Deciphering the role of sulfonamides and molecular basis of thioredoxin domain dynamics through comparative simulations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
From pan-genome to protein dynamics: A computational hierarchical quest to identify drug target in multi-drug resistant Burkholderia cepacia. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Marimuthu SCV, Ravinarayanan H, Rosy JC, Sundar K. Mining the Proteome of Streptococcus mutans for Putative Drug Targets. Infect Disord Drug Targets 2020; 21:429-438. [PMID: 32568025 DOI: 10.2174/1871526520666200622143316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Dental caries is the most common and one of the prevalent diseases in the world. Streptococcus mutans is one of the major oral pathogens that cause dental caries by forming a biofilm on dental tissues, degrading dental enamel and consequent cavitation in the tissue. In vitro selection of drug targets is a laborious and expensive process and therefore, computational methods are preferable for target identification at the initial stage. OBJECTIVE The present research aims to find new drug targets in S. mutans by using subtractive proteomics analysis, which implements various bioinformatics tools and databases. METHODS The proteome of S. mutans UA159 was mined for novel drug targets using computational tools and databases such as: CD-HIT, BLASTP, DEG, KAAS and CELL2GO. RESULTS Out of 1953 proteins of S. mutans UA159, proteins that are redundant, homologous to human and non-essential to the pathogen were eliminated. Around 178 proteins already available in drug target repositories were also eliminated. Possible functions and subcellular localization of 32 uncharacterized proteins were predicted. Substantially, 13 proteins were identified as novel drug targets in S. mutans UA159 that can be targeted by various drugs against dental caries. CONCLUSION This study will effectuate the development of novel therapeutic agents against dental caries and other Streptococcal infections.
Collapse
Affiliation(s)
- Shakti Chandra Vadhana Marimuthu
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, India
| | | | - Joseph Christina Rosy
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, India
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, India
| |
Collapse
|
9
|
Kiani YS, Ranaghan KE, Jabeen I, Mulholland AJ. Molecular Dynamics Simulation Framework to Probe the Binding Hypothesis of CYP3A4 Inhibitors. Int J Mol Sci 2019; 20:E4468. [PMID: 31510073 PMCID: PMC6769491 DOI: 10.3390/ijms20184468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/22/2019] [Accepted: 09/01/2019] [Indexed: 12/20/2022] Open
Abstract
The Cytochrome P450 family of heme-containing proteins plays a major role in catalyzing phase I metabolic reactions, and the CYP3A4 subtype is responsible for the metabolism of many currently marketed drugs. Additionally, CYP3A4 has an inherent affinity for a broad spectrum of structurally diverse chemical entities, often leading to drug-drug interactions mediated by the inhibition or induction of the metabolic enzyme. The current study explores the binding of selected highly efficient CYP3A4 inhibitors by docking and molecular dynamics (MD) simulation protocols and their binding free energy calculated using the WaterSwap method. The results indicate the importance of binding pocket residues including Phe57, Arg105, Arg106, Ser119, Arg212, Phe213, Thr309, Ser312, Ala370, Arg372, Glu374, Gly481 and Leu483 for interaction with CYP3A4 inhibitors. The residue-wise decomposition of the binding free energy from the WaterSwap method revealed the importance of binding site residues Arg106 and Arg372 in the stabilization of all the selected CYP3A4-inhibitor complexes. The WaterSwap binding energies were further complemented with the MM(GB/PB)SA results and it was observed that the binding energies calculated by both methods do not differ significantly. Overall, our results could guide towards the use of multiple computational approaches to achieve a better understanding of CYP3A4 inhibition, subsequently leading to the design of highly specific and efficient new chemical entities with suitable ADMETox properties and reduced side effects.
Collapse
Affiliation(s)
- Yusra Sajid Kiani
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| | - Kara E Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
10
|
Ahmad S, Murtaza UA, Raza S, Azam SS. Blocking the catalytic mechanism of MurC ligase enzyme from Acinetobacter baumannii: An in Silico guided study towards the discovery of natural antibiotics. J Mol Liq 2019; 281:117-133. [DOI: 10.1016/j.molliq.2019.02.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Shoaib M, Shehzad A, Raza H, Niazi S, Khan IM, Akhtar W, Safdar W, Wang Z. A comprehensive review on the prevalence, pathogenesis and detection ofYersinia enterocolitica. RSC Adv 2019; 9:41010-41021. [PMID: 35540058 PMCID: PMC9076465 DOI: 10.1039/c9ra06988g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/31/2019] [Indexed: 01/23/2023] Open
Abstract
Food safety is imperative for a healthy life, but pathogens are still posing a significant life threat. “Yersiniosis” is caused by a pathogen named Yersinia enterocolitica and is characterized by diarrheal, ileitis, and mesenteric lymphadenitis types of sicknesses. This neglected pathogen starts its pathogenic activity by colonizing inside the intestinal tract of the host upon the ingestion of contaminated food. Y. enterocolitica remains a challenge for researchers and food handlers due to its growth habits, low concentrations in samples, morphological similarities with other bacteria and lack of rapid, cost-effective, and accurate detection methods. In this review, we presented recent information about its prevalence, biology, pathogenesis, and existing cultural, immunological, and molecular detection approaches. Our ultimate goal is to provide updated knowledge regarding this pathogen for the development of quick, effective, automated, and sensitive detection methods for the systematic detection of Y. enterocolitica. Food safety is imperative for a healthy life, but pathogens are still posing a significant life threat.![]()
Collapse
Affiliation(s)
- Muhammad Shoaib
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Synergetic Innovation Center of Food Safety and Nutrition
| | - Aamir Shehzad
- UniLaSalle
- Transformations & Agroressources Research Unit
- France
- National Institute of Food Science and Technology
- FFNHS
| | - Husnain Raza
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- National Institute of Food Science and Technology
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- National Institute of Food Science and Technology
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Synergetic Innovation Center of Food Safety and Nutrition
| | - Wasim Akhtar
- Synergetic Innovation Center of Food Safety and Nutrition
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Waseem Safdar
- University Institute of Diet and Nutritional Sciences
- The University of Lahore-Islamabad Campus
- Islamabad
- Pakistan
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Synergetic Innovation Center of Food Safety and Nutrition
| |
Collapse
|