1
|
Song M, Zhu S, Jiao Z, Ou Z, Liu Y, Guo L. Search for the superiority of supercritical water with ab initio molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Gittus OR, Bresme F. Thermophysical properties of water using reactive force fields. J Chem Phys 2021; 155:114501. [PMID: 34551553 DOI: 10.1063/5.0057868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The widescale importance and rich phenomenology of water continue to motivate the development of computational models. ReaxFF force fields incorporate many characteristics desirable for modeling aqueous systems: molecular flexibility, polarization, and chemical reactivity (bond formation and breaking). However, their ability to model the general properties of water has not been evaluated in detail. We present comprehensive benchmarks of the thermophysical properties of water for two ReaxFF models, the water-2017 and CHON-2017_weak force fields. These include structural, electrostatic, vibrational, thermodynamic, coexistence, and transport properties at ambient conditions (300 K and 0.997 g cm-3) and along the standard pressure (1 bar) isobar. Overall, CHON-2017_weak predicts more accurate thermophysical properties than the water-2017 force field. Based on our results, we recommend potential avenues for improvement: the dipole moment to quadrupole moment ratio, the self-diffusion coefficient, especially for water-2017, and the gas phase vibrational frequencies with the aim to improve the vibrational properties of liquid water.
Collapse
Affiliation(s)
- Oliver R Gittus
- Department of Chemistry, Molecular Sciences Research Hub Imperial College, London W12 0BZ, United Kingdom
| | - Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub Imperial College, London W12 0BZ, United Kingdom
| |
Collapse
|
3
|
Abstract
Thinking about water is inextricably linked to hydrogen bonds, which are highly directional in character and determine the unique structure of water, in particular its tetrahedral H-bond network. Here, we assess if this common connotation also holds for supercritical water. We employ extensive ab initio molecular dynamics simulations to systematically monitor the evolution of the H-bond network mode of water from room temperature, where it is the hallmark of its fluctuating three-dimensional network structure, to supercritical conditions. Our simulations reveal that the oscillation period required for H-bond vibrations to occur exceeds the lifetime of H-bonds in supercritical water by far. Instead, the corresponding low-frequency intermolecular vibrations of water pairs as seen in supercritical water are found to be well represented by isotropic van-der-Waals interactions only. Based on these findings, we conclude that water in its supercritical phase is not a H-bonded fluid.
Collapse
Affiliation(s)
- Philipp Schienbein
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum44780BochumGermany
| | - Dominik Marx
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum44780BochumGermany
| |
Collapse
|
4
|
Affiliation(s)
- Philipp Schienbein
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum 44780 Bochum Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum 44780 Bochum Germany
| |
Collapse
|
5
|
Song F, Niu H, Fan J, Chen Q, Wang G, Liu L. Molecular dynamics study on the coalescence and break-up behaviors of ionic droplets under DC electric field. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Lawler R, Caliendo C, Ju H, Kim JY, Lee SW, Jang SS. Effect of the Side-Chain Length in Perfluorinated Sulfonic and Phosphoric Acid-Based Membranes on Nanophase Segregation and Transport: A Molecular Dynamics Simulation Approach. J Phys Chem B 2020; 124:1571-1580. [PMID: 32026694 DOI: 10.1021/acs.jpcb.9b10408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of side-chain length on the nanophase-segregated structure and transport in perfluorinated sulfonic acid (PFSA)-based and perfluorinated phosphoric acid (PFPA)-based membranes is investigated at 20 and 5 wt % water content conditions using a molecular dynamics simulation method. It is found using the pair correlation analysis that the longer side chain leads to more developed local water structures in the water phase at 20 wt % water content, observable in both membrane chemistries albeit more distinct in PFPA-based membranes. It is also confirmed from the structure factor analysis that large-scale nanophase segregation is enhanced with increasing side-chain length for PFPA membranes, whereas no significant change is observed at these scales for PFSA membranes. Next, it is revealed that the proton transport is increased by 0.004 S/cm in PFSA-based membranes with increasing side-chain length due to the enhanced vehicular and hopping mechanisms, whereas the proton transport in PFPA-based membranes is decreased by 0.002 S/cm despite improved nanophase segregation. As confirmed by the pair correlation function analysis, the diminished proton transport in PFPA-based membranes is attributed to the molecular association of phosphate groups with hydronium ions via hydrogen bond in the longer side-chain case, which is namely a hydronium-mediated bridge configuration. Such bridge configurations and correspondingly similar trends in proton transport are also observed at 5 wt % water content condition to a lesser extent. Our simulation study demonstrates that the proton transport is affected by the hydrogen-bonding network as well as by the nanophase segregation.
Collapse
Affiliation(s)
- Robin Lawler
- Computational NanoBio Technology Laboratory, School of Materials Science and Engineering , Georgia Institute of Technology , 771 Ferst Drive NW , Atlanta , Georgia 30332 , United States.,School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive NW , Atlanta , Georgia 30332 , United States
| | - Charles Caliendo
- Computational NanoBio Technology Laboratory, School of Materials Science and Engineering , Georgia Institute of Technology , 771 Ferst Drive NW , Atlanta , Georgia 30332 , United States
| | - Hyunchul Ju
- Department of Mechanical Engineering , Inha University , 100 Inha-ro , Michuhol-gu, Incheon 22212 , Republic of Korea
| | - Jin Young Kim
- Center for Hydrogen Fuel Cell Research , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Seung Woo Lee
- G. W. Woodruff School of Mechanical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,Strategic Energy Institute , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Seung Soon Jang
- Computational NanoBio Technology Laboratory, School of Materials Science and Engineering , Georgia Institute of Technology , 771 Ferst Drive NW , Atlanta , Georgia 30332 , United States.,Strategic Energy Institute , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,Institute for Electronics and Nanotechnology , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
7
|
Zeng Y, Li A, Yan T. Hydrogen Bond Dynamics in the Solvation Shell on Proton Transfer in Aqueous Solution. J Phys Chem B 2020; 124:1817-1823. [DOI: 10.1021/acs.jpcb.0c00990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yonghui Zeng
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Ailin Li
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Tianying Yan
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
9
|
Liu X, Wang T, He M. Investigation on the condensation process of HFO refrigerants by molecular dynamics simulation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Shi Y, Zhang Z, Jiang W, Wang R, Wang Z. Infrared spectral-shift induced by hydrogen bonding cooperativity in cyclic and prismatic water clusters. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|