1
|
Gong X, Guo R, Li X, Yang Y, Lin W. A red-emitting mitochondria targetable fluorescent probe for detecting viscosity in HeLa, zebrafish, and mice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:293-300. [PMID: 38115761 DOI: 10.1039/d3ay01488f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Viscosity, an essential parameter of the cellular microenvironment, has the ability to indicate the condition of living cells. It is closely linked to numerous diseases like Alzheimer's disease, diabetes, and cardiovascular disorders. Therefore, it is necessary to design tools to effectively monitor viscosity changes, which could provide promising avenues for therapeutic interventions in these diseases. Herein, we report a novel mitochondria-targeting fluorescent probe GX-VS which was suitable for the detection of viscosity changes in vivo and in vitro. The probe GX-VS had many advantages such as long emission wavelength (650 nm), large Stokes shift (105 nm), significant fluorescence enhancement (59-fold), high sensitivity, good biocompatibility and so on. Biological experiments showed that the probe could target mitochondria and detect viscosity alterations in HeLa cells. Moreover, it has been successfully utilized to monitor viscosity changes induced by lipopolysaccharides (LPS) in inflammatory zebrafishes and living mice, which further underscored the capacity of GX-VS to explore fluctuations in viscosity within living organisms.
Collapse
Affiliation(s)
- Xi Gong
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Rui Guo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Xiaoya Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Yingjie Yang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
2
|
Li Y, Lei J, Qin X, Li G, Zhou Q, Yang Z. A mitochondria-targeted dual-response sensor for monitoring viscosity and peroxynitrite in living cells with distinct fluorescence signals. Bioorg Chem 2023; 138:106603. [PMID: 37210825 DOI: 10.1016/j.bioorg.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Viscosity and peroxynitrite (ONOO-) are two significant indicators to affect and evaluate the mitochondrial functional status, which are nearly relational with pathophysiological process in many diseases. Developing suitable analytical methods for monitoring mitochondrial viscosity changes and ONOO- is thus of great importance. In this research, a new mitochondria-targeted sensor DCVP-NO2 for the dual determination of viscosity and ONOO- was exploited based on the coumarin skeleton. DCVP-NO2 displayed a red fluorescence "turn-on" response toward viscosity along with about 30-fold intensity increase. Meanwhile, it could be used as ratiometric probe for detection of ONOO- with excellent sensitivity and extraordinary selectivity for ONOO- over other chemical and biological species. Moreover, thanks to its good photostability, low cytotoxicity and ideal mitochondrion-targeting capability, DCVP-NO2 was successfully utilized for fluorescence imaging of viscosity variations and ONOO- in mitochondria of living cells through different channels. In addition, the results of cell imaging revealed that ONOO- would lead to the increase of viscosity. Taken together, this work provides a potential molecular tool for researching biological functions and interactions of viscosity and ONOO- in mitochondria.
Collapse
Affiliation(s)
- Yaqian Li
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China.
| | - Jieni Lei
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Xin Qin
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Guangyi Li
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Qiulan Zhou
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Zi Yang
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China.
| |
Collapse
|
3
|
Xu L, Huang Y, Peng H, Xu W, Yi X, He G. Triphenylamine-Modified Cinnamaldehyde Derivate as a Molecular Sensor for Viscosity Detection in Liquids. ACS OMEGA 2023; 8:13213-13221. [PMID: 37065079 PMCID: PMC10099141 DOI: 10.1021/acsomega.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Liquid safety is considered a serious public health problem; a convenient and effective viscosity determination method has been regarded as one of the powerful means to detect liquid safety. Herein, one kind of triphenylamine-modified cinnamaldehyde-based fluorescent sensor (3-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)acrylaldehyde (DPABA)) has been developed for sensing viscosity fluctuations in a liquid system, where a cinnamaldehyde derivative was extracted from one kind of natural plant cinnamon and acted as an acceptor, which has been combined with a triphenylamine derivate via the Suzuki coupling reaction within one facile step. Twisted intramolecular charge transfer (TICT) was observed, and the rotation could be restricted in the high-viscosity microenvironment; thus, the fluorescent signal was released at 548 nm. Featured with a larger Stokes shift (223.8 nm in water, 145.0 nm in glycerol), high adaptability, sensitivity, selectivity, and good photostability, the capability of high signal-to-noise ratio sensing was achieved. Importantly, this sensor DPABA has achieved noninvasively identifying thickening efficiency investigation, and viscosity fluctuations during the liquid deterioration program have been screened as well. We believed that this unique strategy can accelerate intelligent molecular platforms toward liquid quality and safety inspection.
Collapse
Affiliation(s)
- Lingfeng Xu
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
- State
Key Laboratory of Luminescent Materials & Devices, College of
Materials Science & Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Yanrong Huang
- School
of Modern Agriculture and Forestry Engineering, Ji’an Vocational and Technical College, Ji’an 343009, Jiangxi, China
| | - Hui Peng
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
| | - Wenyan Xu
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
| | - Xiuguang Yi
- School
of Chemistry and Chemical Engineering, Jinggangshan
University, Ji’an 343009, Jiangxi, China
| | - Genhe He
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
| |
Collapse
|
4
|
Xu L, Zhao J, Xiong F, Huang Y, Sui Y. Activatable molecular rotor based on bithiophene quinolinium toward viscosity detection in liquids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2204-2211. [PMID: 35612408 DOI: 10.1039/d2ay00539e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of non-invasive and effective viscosity inspection methods during the liquid deterioration process is urgently needed since viscosity is one of the most important physical parameters of liquids. Methods featuring rapid detection, high sensitivity, cheap equipment, and fast result output are greatly desired. In this study, a viscosity-sensitive molecular rotor (BTPEQ) with a large Stokes shift (187 nm), and long emission wavelength (648 nm) has been developed. The rotor is comprised of a bithiophene donor and quinolinium acceptor, and displays a typical twisted intramolecular-charge transfer (TICT) feature, with good photostability, selectivity, and universality in various commercial liquids. With the aid of BTPEQ, the thickening effects of liquid thickeners can be determined. More importantly, BTPEQ was explored to visualize the viscosity variations in liquids at different metamorphic stages, and it was found that the viscosity level in microenvironments is highly dependent on the liquid food metamorphic period. It is worth noting that this approach can facilitate the continued perfection of fluorescent analytical methods for food quality and safety inspection.
Collapse
Affiliation(s)
- Lingfeng Xu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jingyi Zhao
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Fangzhi Xiong
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Yanrong Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Yan Sui
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| |
Collapse
|
5
|
Thioflavin-modified molecularly imprinted hydrogel for fluorescent-based non-enzymatic glucose detection in wound exudate. Mater Today Bio 2022; 14:100258. [PMID: 35469256 PMCID: PMC9034389 DOI: 10.1016/j.mtbio.2022.100258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The concentration of glucose in the body's fluids is an important parameter that can indicate pathological conditions such as the progress of infected wounds. Several wearables and implantable detection approaches have been developed with high selectivity and sensitivity for glucose. However, all of them have drawbacks such as low stability, limited selectivity, and often require complex technology. In this work, we present a fluorescent-based cost-efficient imprinted hydrogel (MIH_GSH) capable of detecting glucose within 30 min. The imprinting approach allows us to improve the selectivity for glucose, overcoming the low specificity and limited binding efficiency at neutral pH of boronic acid-based detection mechanisms. The binding affinity determined for glucose-MIH_GSH was indeed 6-fold higher than the one determined for the non-imprinted hydrogel with a calculated imprinting factor of 1.7. The limit of detection of MIH_GSH for glucose in artificial wound exudate was calculated as 0.48 mM at pH 7.4 proving the suitability of the proposed approach to diagnose chronic wounds (ca. 1 mM). MIH_GSH was compared with a commercial colorimetric assay for the quantification of glucose in wound exudate specimens collected from hospitalized patients. The results obtained with the two methods were statistically similar confirming the robustness of our approach. Importantly, whereas with the colorimetric assay sample preparation was required to limit the interference of the sample background, the fluorescent signal of MIH_GSH was not affected even when used to measure glucose directly in bloody samples. The sensing mechanism here proposed can pave the way for the development of cost-efficient and wearable point-of-care tools capable of monitoring the glucose level in wound exudate enabling the quick assessment of chronic injuries. Highly sensitive and selective non-enzymatic approach to detect glucose in wound exudate. The fluorescent-based method ensured the detection of glucose in complex biological samples. The imprinting approach allowed overcoming the drawback of boronic acid-based methods. The cost-efficient approach is suitable for the development of point-of-care devices.
Collapse
|
6
|
Antina LA, Kalyagin AA, Ksenofontov AA, Pavelyev RS, Lodochnikova OA, Islamov DR, Berezin MB, Antina EV. Effects of ms-aryl substitution on the structure and spectral properties of new CH(Ar)-bis(BODIPY) luminophores. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120393. [PMID: 34597923 DOI: 10.1016/j.saa.2021.120393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
In this article, we present synthesis, spectral characteristics, and results of DFT calculations of new CH(R)-bis(BODIPY) 1-3. They are characterized by the conformational mobility and sensitivity of fluorescence to polarity, proton-, electron donor ability and viscosity of the solvation environment. It is shown that fluorescence intensity of 1-3 increases in the homologous series of alcohols (ethanol, 1-propanol, 1-butanol, 1-octanol, 1-decanol) mainly due to decrease of medium acidic properties. The viscosity of the medium effects on the 1-3 fluorescence in a lesser degree. Compared to 1 and 2, the 3 is the most sensitive towards viscosity both in low-viscosity homologous alcohols and in high-viscosity ethanol-glycerol mixtures. In this regard, the sensitivity of fluorescence of CH(MeOPh)-bis(BODIPY) (compound 3) to the viscosity was studied in binary mixtures of polar DMF and low-polarity toluene with castor and vaseline oils, as well as to the macroviscosity of the solvate environment in mixtures of toluene with polystyrene. Prospects of the practical application of CH(R)-bis(BODIPY)s are proposed for the analysis of polarity, proton-donor properties and viscosity of the medium.
Collapse
Affiliation(s)
- Lubov A Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia.
| | - Alexander A Kalyagin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| | - Alexander A Ksenofontov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| | - Roman S Pavelyev
- Kazan Federal University, 18 Kremlyovskaya st., 420008 Kazan, Russian Federation
| | - Olga A Lodochnikova
- Kazan Federal University, 18 Kremlyovskaya st., 420008 Kazan, Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov, 420088 Kazan, Russian Federation
| | - Daut R Islamov
- Kazan Federal University, 18 Kremlyovskaya st., 420008 Kazan, Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov, 420088 Kazan, Russian Federation
| | - Mikhail B Berezin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| |
Collapse
|
7
|
Takahashi M, Ito N, Haruta N, Ninagawa H, Yazaki K, Sei Y, Sato T, Obata M. Environment-sensitive emission of anionic hydrogen-bonded urea-derivative-acetate-ion complexes and their aggregation-induced emission enhancement. Commun Chem 2021; 4:168. [PMID: 36697743 PMCID: PMC9814938 DOI: 10.1038/s42004-021-00601-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/08/2021] [Indexed: 01/28/2023] Open
Abstract
Anions often quench fluorescence (FL). However, strong ionic hydrogen bonding between fluorescent dyes and anion molecules has the potential to control the electronic state of FL dyes, creating new functions via non-covalent interactions. Here, we propose an approach, utilising ionic hydrogen bonding between urea groups and anions, to control the electronic states of fluorophores and develop an aggregation-induced emission enhancement (AIEE) system. The AIEE ionic hydrogen-bonded complex (IHBC) formed between 1,8-diphenylnaphthalene (p-2Urea), with aryl urea groups at the para-positions on the peri-phenyl rings, and acetate ions exhibits high environmental sensitivities in solution phases, and the FL quantum yield (QY) in ion-pair assemblies of the IHBC and tetrabutylammonium cations is more than five times higher than that of the IHBC in solution. Our versatile and simple approach for the design of AIEE dye facilitates the future development of environment-sensitive probes and solid-state emitting materials.
Collapse
Affiliation(s)
- Masaki Takahashi
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan.
| | - Nozomu Ito
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan
| | - Naoki Haruta
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto, 606-8103, Japan.,Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.,Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hayato Ninagawa
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan
| | - Kohei Yazaki
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan
| | - Yoshihisa Sei
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Tohru Sato
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto, 606-8103, Japan.,Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.,Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Makoto Obata
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan
| |
Collapse
|
8
|
Xu L, Wu K, Han R, Sui Y, Huang C, Huang W, Liu L. Visual detection of viscosity through activatable molecular rotor with aggregation-induced emission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120016. [PMID: 34091356 DOI: 10.1016/j.saa.2021.120016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Food safety has become one of the urgent affairs in the global public health studies, and irregular viscosity is closely associated with the food spoilage extent. In this study, one kind of activatable molecular rotor (TPA-PBZ) based on triphenylamine derivates has been synthesized via the Schiff base condensation reaction. This rotor is comprised by donor-accepter conjugated structure, with aggregation induced-emission feature and a large Stokes shift of 160 nm in water. The rotation of aromatic rings in TPA-PBZ is restricted in high-viscosity microenvironment, with the gradually increasing fluorescence emission signal at 568 nm. Significantly, this rotor TPA-PBZ has successfully been applied not only in the determination of thickening effects of food gum, but also in the detection of viscosity enhancement during the liquid food spoilage process. This molecular rotor can be utilized as an intelligent monitor platform for food quality and safety inspection in viscosity-related conditions.
Collapse
Affiliation(s)
- Lingfeng Xu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China; State Key Laboratory of Luminescent Materials & Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Kui Wu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Runlin Han
- School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yan Sui
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Chunfang Huang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Limin Liu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China.
| |
Collapse
|
9
|
Nanomaterial-Based Drilling Fluids for Exploitation of Unconventional Reservoirs: A Review. ENERGIES 2020. [DOI: 10.3390/en13133417] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The world’s energy demand is steadily increasing where it has now become difficult for conventional hydrocarbon reservoir to meet levels of demand. Therefore, oil and gas companies are seeking novel ways to exploit and unlock the potential of unconventional resources. These resources include tight gas reservoirs, tight sandstone oil, oil and gas shales reservoirs, and high pressure high temperature (HPHT) wells. Drilling of HPHT wells and shale reservoirs has become more widespread in the global petroleum and natural gas industry. There is a current need to extend robust techniques beyond costly drilling and completion jobs, with the potential for exponential expansion. Drilling fluids and their additives are being customized in order to cater for HPHT well drilling issues. Certain conventional additives, e.g., filtrate loss additives, viscosifier additives, shale inhibitor, and shale stabilizer additives are not suitable in the HPHT environment, where they are consequently inappropriate for shale drilling. A better understanding of the selection of drilling fluids and additives for hydrocarbon water-sensitive reservoirs within HPHT environments can be achieved by identifying the challenges in conventional drilling fluids technology and their replacement with eco-friendly, cheaper, and multi-functional valuable products. In this regard, several laboratory-scale literatures have reported that nanomaterial has improved the properties of drilling fluids in the HPHT environment. This review critically evaluates nanomaterial utilization for improvement of rheological properties, filtrate loss, viscosity, and clay- and shale-inhibition at increasing temperature and pressures during the exploitation of hydrocarbons. The performance and potential of nanomaterials, which influence the nature of drilling fluid and its multi-benefits, is rarely reviewed in technical literature of water-based drilling fluid systems. Moreover, this review presented case studies of two HPHT fields and one HPHT basin, and compared their drilling fluid program for optimum selection of drilling fluid in HPHT environment.
Collapse
|
10
|
Thermodynamic and hydrodynamic fluorescence emission behaviors of polydiphenylacetylenes with different size of substituents. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|