1
|
Bichan N, Ovchenkova E, Mozgova V, Kudryakova N, Lomova T. Donor-acceptor dyads based on octakis – Substituted cobalt(II) phthalocyanine and different fullero[60]/[70]pyrrolidines. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Ovchenkova EN, Motorina EV, Bichan NG, Gostev FE, Lomova TN. Self-assembling cobalt(II) porphyrin - fullero[60]pyrrolidine triads. Synthesis and spectral properties in the ground and excited state. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Lomova TN, Motorina EV, Bichan NG. The formation kinetics, the chemical structure and the application prospects of the (ethoxy)(oxo)(5,10,15,20-(4-tert-butylphenyl)porphinato)molybdenum(V) coordination complexes with pyridine/pyridine bearing 1-N-methyl-3,4-fullero[60]pyrrolidine. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Bichan N, Tsaturyan A, Ovchenkova E, Kudryakova N, Gostev F, Shelaev I, Aybush A, Nadtochenko V, Lomova T. Donor-acceptor interactions of gold(III) porphyrins with cobalt(II) phthalocyanine: chemical structure of products, their spectral characterization and DFT study. Dalton Trans 2022; 51:9072-9084. [PMID: 35647909 DOI: 10.1039/d2dt01182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of the development of coordination energy-harvesting systems, the axial bonding of cobalt(II) octakis(3,5-di-tert-butylphenoxy)phthalocyanine (1) with gold(III) 2,3,7,8,12,18-hexamethyl,13,17-diethyl,5-(pyridin-4-yl)- and (2,3,7,8,12,18-hexamethyl,13,17-diethyl,5-(pyridin-3-yl)porphin (2 and 3), the structure, the spectral/electrochemical properties of the resulting donor-acceptor complexes and photoinduced electron transfer in them are studied. The process of the dyad formation passing as self-assembly in the donor-acceptor phthalocyanine-porphyrin systems was explored using UV-Visible, IR, and 1H NMR spectroscopy and mass spectrometry. The geometric and electronic structures of the dyads were identified using density functional theory (DFT) and time-dependent DFT calculations. The electron transfer in the coordination complexes studied was confirmed by recording the radical ion pairs namely 1˙+ : 2˙-/1˙+ : 3˙- and measuring the kinetics of the photoinduction and decay of these states by a femtosecond laser photolysis technique. The effect of the gold(III) porphyrin macrocycle nature in the lifetime of radical ion pairs was shown. The redox potential values for the coordination dyads and the photoelectrochemical parameters defining their perspective in design and understanding of PET systems were observed using the cyclic voltammetry/amperometry methods and the short-circuited electrochemical cell Ti|a dyad film|0.5 M Na2SO4|Pt, respectively.
Collapse
Affiliation(s)
- Nataliya Bichan
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | - Arshak Tsaturyan
- Univ Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR5516, F-42023 St-Etienne, France. .,Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - Ekaterina Ovchenkova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | - Nadezhda Kudryakova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | - Fedor Gostev
- N.N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan Shelaev
- N.N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Arseny Aybush
- N.N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Victor Nadtochenko
- N.N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Tatyana Lomova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| |
Collapse
|
5
|
Borges-Martínez M, Montenegro-Pohlhammer N, Zhang X, Galvez-Aranda DE, Ponce V, Seminario JM, Cárdenas-Jirón G. Fullerene binding effects in Al(III)/Zn(II) Porphyrin/Phthalocyanine photophysical properties and charge transport. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120740. [PMID: 34968837 DOI: 10.1016/j.saa.2021.120740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
We evaluate the fullerene C60 binding effect; through the metal (Al) and through the ligand (Pc,TPP), on the photophysical and charge transport properties of M-porphyrin(TPP)/phthalocyanine(Pc) (M = Al(III), Zn(II)). We perform density functional theory (DFT) and time-dependent DFT calculations for the macrocycle-C60 dyads, showing that all systems studied are thermodynamically favorable. The C60 binding effect on the absorption spectrum is a red-shift of the Q and Soret (B) bands of TPPs and Pcs. The Pc-dyads show longer λ for Q bands (673 nm) than those with TPP (568 nm). AlTPP-C60 and ZnTPP-C60 show a more favorable electron injection to TiO2 than the analogs Pcs, and the regeneration of the dye is preferred in AlTPP-C60 and AlPc-C60. Zero-bias conductance is computed (10-4-10-7 G0) for the dyads using molecular junctions with Au(111)-based electrodes. When a bias voltage of around 0.6 V up to 1 V is applied, an increase in current is obtained for AlTPP-C60 (10-7 A), ZnTPP-C60 (10-7 A), and AlPc-C60 (10-8 A). Although there is not a unique trend in the behavior of the dyads, Pcs have better photophysical properties than TPPs and the latter are better in the charge transport. We conclude that AlTPP(ZnTPP)-C60 dyads are an excellent alternative for designing new materials for dye-sensitized solar cells or optoelectronic devices.
Collapse
Affiliation(s)
- Merlys Borges-Martínez
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), 9170022, Santiago, Chile.
| | - Nicolás Montenegro-Pohlhammer
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), 9170022, Santiago, Chile.
| | - Xiance Zhang
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, U.S.A
| | - Diego E Galvez-Aranda
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, U.S.A
| | - Victor Ponce
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, U.S.A
| | - Jorge M Seminario
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, U.S.A.
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), 9170022, Santiago, Chile.
| |
Collapse
|
6
|
Bichan N, Ovchenkova E, Mozgova V, Kudryakova N, Lomova T. Three cobalt(II) porphyrins ligated with pyridyl-containing nanocarbon/gold(III) porphyrin for solar cells: Synthesis and characterization. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
|
8
|
Lomova T. Recent progress in organometallic porphyrin‐based molecular materials for optical sensing, light conversion, and magnetic cooling. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tatyana Lomova
- Laboratory of Synthesis and Reactivity of Metal Porphyrins G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences Ivanovo Russia
| |
Collapse
|
9
|
Bichan N, Ovchenkova E, Ksenofontov A, Kudryakova N, Semeikin A, Lomova T. Self-organizing donor-acceptor assemblies of cobalt(II) porphyrin ligated with gold(III) porphyrin or fullero[60]pyrrolidine in liquid medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Covalent and non-covalent systems based on s-, p-, and d-metal macroheterocyclic complexes and fullerenes. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3081-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Lomova TN, Motorina EV, Mozhzhukhina EG, Gruzdev MS. Novel fluorescence quenching triad based on molybdenum(V) tetra-p-tolylporphyrin and substituted fullero[60]pyrrolidine. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the aim of designing new photoactive donor–acceptor dyads, self-assembly in the (ethoxy)(oxo)(5,10,15,20-(4-methylphenyl)porphinato)molybdenum(V) (O=Mo(OEt)TTP)–2[Formula: see text]-(pyridin-4-yl)-5[Formula: see text]-(pyridin-2-yl)-1[Formula: see text]-(pyridin-2-yl-methyl)pyrrolidino[60]fullerene (Py3F)-toluene systems was quantitatively studied using spectral methods (UV-vis, IR, 1H NMR, mass spectrometry), chemical thermodynamics, and chemical kinetics. Interaction between O=Mo(OEt)TTP and pyridine (Py) proceeding as step equilibriums was preliminarily studied to model the processes above. The novel donor–acceptor triad based on O=Mo(OEt)TTP and Py3F is represented with both quantitative description of its formation and conformation of the chemical structure. Prospects for the study of the triad as a photosynthetic antenna imitator and an active layer in organic solar cells are substantiated by a fluorescence method. Along with this, it has been demonstrated that O=Mo(OEt)TTP is a good candidate for use as an optical and fluorescent chemosensor of volatile organic compounds and nitrogen bases — the building blocks of pharmaceuticals, food components and environmental pollutants.
Collapse
Affiliation(s)
- Tatyana N. Lomova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya str., 1, Ivanovo, 153045, Russia
| | - Elena V. Motorina
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya str., 1, Ivanovo, 153045, Russia
| | - Elena G. Mozhzhukhina
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya str., 1, Ivanovo, 153045, Russia
| | - Matvey S. Gruzdev
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya str., 1, Ivanovo, 153045, Russia
| |
Collapse
|
12
|
Bichan NG, Ovchenkova EN, Mozgova VA, Kudryakova NO, Gruzdev MS, Lomova TN. Mechanism of the Self-Assembly of Donor–Acceptor Triads Based on Cobalt(II) Porphyrin Complex and Fullero[60]pyrrolidine, According to Data Obtained by Spectroscopic and Electrochemical Means. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420060060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Bichan NG, Ovchenkova EN, Tsaturyan AA, Lomova TN. Spectral properties of supramolecular systems based on cobalt(ii)/manganese(iii) phthalocyanine and fullero[60]pyrrolidines with PET. NEW J CHEM 2020. [DOI: 10.1039/d0nj02166k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Photoinduced electron transfer in the metallophthalocyanine–fullerene dyads was confirmed and the main “chemical structure – spectral properties” dependences were revealed.
Collapse
Affiliation(s)
- N. G. Bichan
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- Ivanovo
- Russia
| | - E. N. Ovchenkova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- Ivanovo
- Russia
| | - A. A. Tsaturyan
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov-on-Don
- Russia
| | - T. N. Lomova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- Ivanovo
- Russia
| |
Collapse
|