1
|
Photochromic and Luminescent Properties of a Salt of a Hybrid Molecule Based on C 60 Fullerene and Spiropyran-A Promising Approach to the Creation of Anticancer Drugs. Molecules 2023; 28:molecules28031107. [PMID: 36770772 PMCID: PMC9921579 DOI: 10.3390/molecules28031107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
For the first time a pyrrolidinofullerene salt containing a spiropyran group and an ammonium group, capable of reversibly reacting to UV radiation, has been synthesized. Photoinduced reactions of the synthesized compounds were studied using absorption and luminescence spectroscopies, spectral and kinetic characteristics were measured. The hybrid molecule was found to exhibit intrinsic fluorescence even in the spirocyclic form. The C60 derivative showed a higher stability and better spectral and luminescent properties than the precursor.
Collapse
|
2
|
Romanova VS, Yu. Shepeta N, Klemenkova ZS, Kochetkov KA. Catalytically active hybrid complex of fullerene C60 and vitamine B12. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Mikheev IV, Pirogova MO, Usoltseva LO, Uzhel AS, Bolotnik TA, Kareev IE, Bubnov VP, Lukonina NS, Volkov DS, Goryunkov AA, Korobov MV, Proskurnin MA. Green and rapid preparation of long-term stable aqueous dispersions of fullerenes and endohedral fullerenes: The pros and cons of an ultrasonic probe. ULTRASONICS SONOCHEMISTRY 2021; 73:105533. [PMID: 33799110 PMCID: PMC8044700 DOI: 10.1016/j.ultsonch.2021.105533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
A green, scalable, and sustainable approach to prepare aqueous fullerene dispersions (AFD) C60, C70, endohedral metallofullerene Gd@C82, and their derivatives C60Cl6, C70Cl10, and supramolecular and ester-like derivatives, 10 fullerene species total, is proposed. For the first time, an immersed ultrasonic probe was used to preparing dispersions for pristine fullerenes without addends. Both ultrasound-assisted solvent-exchange and direct sonication techniques for AFD preparation using an immersed probe were tested. The average time for AFD preparation decreases 10-15 times compared to an ultrasound-bath-assisted technique, while final fullerene concentrations in AFDs remained at tens of ppm (up to 80 ppm). The aqueous dispersions showed long-term stability, a negatively charged surface with a zeta potential up to -32 mV with an average nanocluster diameter of no more than 180 nm. The total anionic and cationic compositions of samples were found by inductively coupled plasma atomic emission spectroscopy and chromatographic techniques. The highlights and challenges of using an ultrasound probe for AFD production are discussed.
Collapse
Affiliation(s)
- Ivan V Mikheev
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Mariya O Pirogova
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Liliia O Usoltseva
- Chemistry Department Physical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Anna S Uzhel
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Timofey A Bolotnik
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Ivan E Kareev
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia.
| | - Viacheslav P Bubnov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia.
| | - Natalia S Lukonina
- Chemistry Department Physical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Dmitry S Volkov
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Alexey A Goryunkov
- Chemistry Department Physical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Mikhail V Korobov
- Chemistry Department Physical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Mikhail A Proskurnin
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
5
|
Kuklin AI, Ivankov OI, Rogachev AV, Soloviov DV, Islamov AK, Skoi VV, Kovalev YS, Vlasov AV, Ryzykau YL, Soloviev AG, Kucerka N, Gordeliy VI. Small-Angle Neutron Scattering at the Pulsed Reactor IBR-2: Current Status and Prospects. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521020085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Grebinyk A, Prylutska S, Buchelnikov A, Tverdokhleb N, Grebinyk S, Evstigneev M, Matyshevska O, Cherepanov V, Prylutskyy Y, Yashchuk V, Naumovets A, Ritter U, Dandekar T, Frohme M. C 60 Fullerene as an Effective Nanoplatform of Alkaloid Berberine Delivery into Leukemic Cells. Pharmaceutics 2019; 11:pharmaceutics11110586. [PMID: 31717305 PMCID: PMC6920783 DOI: 10.3390/pharmaceutics11110586] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle-C60 fullerene (C60)-for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV-Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C60 binding in an aqueous solution. Complexation with C60 was found to promote Ber intracellular uptake. By increasing C60 concentration, the C60-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C60-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C60 improved its in vitro efficiency against cancer cells.
Collapse
Affiliation(s)
- Anna Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Svitlana Prylutska
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Anatoliy Buchelnikov
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
| | - Nina Tverdokhleb
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
| | - Sergii Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
| | - Maxim Evstigneev
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, 299053 Sevastopol, Crimea; (A.B.); (N.T.); (M.E.)
- Laboratory of Organic Synthesis and NMR Spectroscopy, Belgorod State University, 308015 Belgorod, Russia
| | - Olga Matyshevska
- Palladin Institute of Biochemistry, NAS of Ukraine, Leontovicha Str. 9, 01030 Kyiv, Ukraine;
| | - Vsevolod Cherepanov
- Institute of Physics, NAS of Ukraine, 46 av. Nauki, 03028 Kyiv, Ukraine; (V.C.); (A.N.)
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Valeriy Yashchuk
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine; (S.P.); (Y.P.); (V.Y.)
| | - Anton Naumovets
- Institute of Physics, NAS of Ukraine, 46 av. Nauki, 03028 Kyiv, Ukraine; (V.C.); (A.N.)
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, University of Technology Ilmenau, Weimarer Straße 25 (Curiebau), 98693 Ilmenau, Germany;
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany; (A.G.); s (S.G.)
- Correspondence: ; Tel.: +49-(0)-3375-508-249
| |
Collapse
|
7
|
Abstract
In addition to the underlying basic concepts and early recognition of halogen bonding, this paper reviews the conflicting views that consistently appear in the area of noncovalent interactions and the ability of covalently bonded halogen atoms in molecules to participate in noncovalent interactions that contribute to packing in the solid-state. It may be relatively straightforward to identify Type-II halogen bonding between atoms using the conceptual framework of σ-hole theory, especially when the interaction is linear and is formed between the axial positive region (σ-hole) on the halogen in one monomer and a negative site on a second interacting monomer. A σ-hole is an electron density deficient region on the halogen atom X opposite to the R–X covalent bond, where R is the remainder part of the molecule. However, it is not trivial to do so when secondary interactions are involved as the directionality of the interaction is significantly affected. We show, by providing some specific examples, that halogen bonds do not always follow the strict Type-II topology, and the occurrence of Type-I and -III halogen-centered contacts in crystals is very difficult to predict. In many instances, Type-I halogen-centered contacts appear simultaneously with Type-II halogen bonds. We employed the Independent Gradient Model, a recently proposed electron density approach for probing strong and weak interactions in molecular domains, to show that this is a very useful tool in unraveling the chemistry of halogen-assisted noncovalent interactions, especially in the weak bonding regime. Wherever possible, we have attempted to connect some of these results with those reported previously. Though useful for studying interactions of reasonable strength, IUPAC’s proposed “less than the sum of the van der Waals radii” criterion should not always be assumed as a necessary and sufficient feature to reveal weakly bound interactions, since in many crystals the attractive interaction happens to occur between the midpoint of a bond, or the junction region, and a positive or negative site.
Collapse
|