1
|
Szpecht A, Zielinski D, Roszyk S, Smiglak M. Design and Characterization of Epoxy Resin Systems Based on Mixtures of Imidazolium-Based Ionic Liquids with Docusate and Dicyanamide Anions. Molecules 2024; 29:4538. [PMID: 39407468 PMCID: PMC11478318 DOI: 10.3390/molecules29194538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This study focuses on the synthesis, characterization, and application of four ionic liquids (ILs), three of which are being reported for the first time, with unique thermal properties and diverse anion-cation combinations, specifically in the context of epoxy resin polymerization. 1-3-Didodecylimidazolium dicyanamide (dDDIM DCA), 1-3-Didodecylimidazolium docusate (dDDIM DOSS), 1-ethyl-3-methylimidazolium dicyanamide (EMIM DCA), and 1-ethyl-3-methylimidazolium docusate (EMIM DOSS) were used to prepare six different mixtures with the same cation and with varying concentrations of DCA components, which is the main factor of an efficient polymerization, while the other component is intended to modify the properties of the cured resin. Mixtures based on EMIM cation demonstrated increased enthalpy and lower onset polymerization temperatures, indicating more efficient curing processes. The hardness of cured epoxy resins can be adjusted by altering the curing temperature and IL composition, with EMIM DCA and EMIM DOSS mixtures displaying high Shore A hardness, suitable for durable surface applications. In contrast, mixtures with higher dDDIM DCA proportions offered a balance between rigidity and flexibility, ideal for applications requiring both mechanical strength and elasticity.
Collapse
Affiliation(s)
- Andrea Szpecht
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznan, Poland; (A.S.); (D.Z.); (S.R.)
| | - Dawid Zielinski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznan, Poland; (A.S.); (D.Z.); (S.R.)
| | - Szymon Roszyk
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznan, Poland; (A.S.); (D.Z.); (S.R.)
- Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| | - Marcin Smiglak
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznan, Poland; (A.S.); (D.Z.); (S.R.)
| |
Collapse
|
2
|
Zielinski D, Szpecht A, Kukawka R, Dzialkowska J, Pietrowski M, Zielinski M, Palacz M, Nadobna P, Smiglak M. Supported Ionic Liquid-Phase Materials (SILP) as a Multifunctional Group of Highly Stable Modifiers and Hardeners for Carbon and Flax Epoxy Composites. Chempluschem 2024; 89:e202400193. [PMID: 38619388 DOI: 10.1002/cplu.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
This paper introduces a novel approach to enhance epoxy resin formulations by using SILP materials as multifunctional hardeners and fillers in composite structures reinforced with carbon and flax fibers. This study explores the integration of ionic liquids (ILs) onto a silica support structure, presenting various permutations involving silica selection, ionic liquid choice, and concentration. The focus of this study was to elucidate the influence of SILP on resin curing ability and the mechanical properties of the resulting composites. Detailed research was conducted, including Brunauer-Emmett-Teller analysis (BET) for SILP materials and curing characterization for epoxy resin formulations with different SILP materials. Furthermore, the mechanical properties of the obtained composites were determined by Scanning Electron Microscopy analysis (SEM) (the force at break, the maximum elongation at break, tensile strength, and modulus of elasticity). Through SILP incorporation, the mechanical properties of composites, including the modulus of elasticity and tensile strength, are substantially improved, a phenomenon akin to traditional filler effects. The findings highlight SILP materials as prospective candidates for concurrent hardening and filling roles within composites (through a single-step procedure, with prolonged storage stability and controlled processing conditions), particularly pertinent as the composite industry veers toward epoxy bioresins necessitating liquefaction via temperature application.
Collapse
Affiliation(s)
- Dawid Zielinski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, ul. Rubiez 46, 61-612, Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Andrea Szpecht
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, ul. Rubiez 46, 61-612, Poznan, Poland
| | - Rafal Kukawka
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, ul. Rubiez 46, 61-612, Poznan, Poland
| | - Joanna Dzialkowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Mariusz Pietrowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Michal Zielinski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Magdalena Palacz
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, ul. Rubiez 46, 61-612, Poznan, Poland
| | - Paulina Nadobna
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, ul. Rubiez 46, 61-612, Poznan, Poland
| | - Marcin Smiglak
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, ul. Rubiez 46, 61-612, Poznan, Poland
| |
Collapse
|
3
|
Zielinski D, Szpecht A, Hinc P, Smiglak M. Synthesis and Behavior of Hexamethylenetetramine-Based Ionic Liquids as an Active Ingredient in Latent Curing Formulations with Ethylene Glycol for DGEBA. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020892. [PMID: 36677950 PMCID: PMC9863291 DOI: 10.3390/molecules28020892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
The paper presents the preparation of new ionic liquids based on hexamethylenetetramine with bis(trifluoromethanesulfonyl)imide and dicyanamide anion, which were characterized in detail in terms of their purity (Ion Chromatography) and thermal properties (Differential Scanning Calorimetry), as well as stability. The obtained substances were used to develop curing systems with ethylene glycol, which were successfully tested for their application with bisphenol A diglycidyl ether molecule. In addition, the curing process and its relationship to the structure of the ionic liquid are characterized in detail. The research showed that hexamethylenetetramine-based new ionic liquids can be successfully designed using well-known and simple synthetic methods-the Delepine reaction. Moreover, attention was paid to their stability, related limitations, and the application of hexamethylenetetramine-based ionic liquids in epoxy-curing systems.
Collapse
Affiliation(s)
- Dawid Zielinski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
- Correspondence:
| | - Andrea Szpecht
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznań, Poland
| | - Paulina Hinc
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Marcin Smiglak
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznań, Poland
| |
Collapse
|
4
|
Szpecht A, Zielinski D, Galinski M, Smiglak M. Thermal and Electrochemical Properties of Ionic Liquids Bearing Allyl Group with Sulfonate-Based Anions-Application Potential in Epoxy Resin Curing Process. Molecules 2023; 28:709. [PMID: 36677767 PMCID: PMC9864641 DOI: 10.3390/molecules28020709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Sulfonate-based ionic liquids (ILs) with allyl-containing cations have been previously obtained by us, however, the present study aims to investigate the thermal, electrochemical and curing properties of these ILs. To determine the temperature range in which ionic liquid maintains a liquid state, thermal properties must be examined using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Melting, cold crystallization and glass transition temperatures are discussed, as well as decomposition temperatures for imidazolium- and pyridinium-based ionic liquids. The conductivity and electrochemical stability ranges were studied in order to investigate their potential applicability as electrolytes. Finally, the potential of triflate-based ILs as polymerization initiators for epoxy resins was proven.
Collapse
Affiliation(s)
- Andrea Szpecht
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznań, Poland
| | - Dawid Zielinski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Maciej Galinski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 60-965 Poznań, Poland
| | - Marcin Smiglak
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznań, Poland
| |
Collapse
|
5
|
Turek N, Pala P, Szpecht A, Zając A, Sembratowicz T, Martynkien T, Śmiglak M, Komorowska K. Optical Fiber Grating-Prism Fabrication by Imprint Patterning of Ionic-Liquid-Based Resist. Int J Mol Sci 2023; 24:1370. [PMID: 36674882 PMCID: PMC9865067 DOI: 10.3390/ijms24021370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
We present a method of microstructure fabrication on the tip of the optical fiber using a UV soft-imprint process of polymerizable ionic liquid-based optical resist. Ionic liquid with two UV-sensitive vinylbenzyl groups in the structure was diluted in non-hazardous propylene glycol (PG) to obtain liquid material for imprinting. No additional organic solvent was required. The impact of propylene glycol amount and exposure dose on optical and mechanical properties was investigated. The final procedure of the UV imprint on the optical fiber tip was developed, including the mold preparation, setup building, UV exposure and post-laser cure. As the IL-containing vinylbenzyl groups can also be polymerized by the radical rearrangement of double bonds through thermal heating, the influence of the addition of 1-2% BHT polymerization inhibitor was verified. As a result, we present the fabricated diffraction gratings and the optical fiber spectrometer component-grism (grating-prism), which allows obtaining a dispersion spectrum at the output of an optical in line with the optical fiber long axis, as the main component in an optical fiber spectrometer. The process is very simple due to the fact that its optimization already starts in the process of molecule design, which is part of the trend of sustainable technologies. The final material can be designed by the tailoring of the anion and/or cation molecule, which in turn can lead to a more efficient fabrication procedure and additional functionalities of the final structure.
Collapse
Affiliation(s)
- Natalia Turek
- Lukasiewicz Research Network—Institute of Microelectronics and Photonics, al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Piotr Pala
- Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Str., 50-370 Wroclaw, Poland
| | - Andrea Szpecht
- Poznan Science and Technology Park, Rubiez Str. 46, 61-612 Poznan, Poland
| | - Adrian Zając
- Poznan Science and Technology Park, Rubiez Str. 46, 61-612 Poznan, Poland
| | - Teresa Sembratowicz
- Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Str., 50-370 Wroclaw, Poland
| | - Tadeusz Martynkien
- Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Str., 50-370 Wroclaw, Poland
| | - Marcin Śmiglak
- Poznan Science and Technology Park, Rubiez Str. 46, 61-612 Poznan, Poland
| | - Katarzyna Komorowska
- Lukasiewicz Research Network—Institute of Microelectronics and Photonics, al. Lotników 32/46, 02-668 Warsaw, Poland
- Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Str., 50-370 Wroclaw, Poland
| |
Collapse
|
6
|
Belhocine M, Bourzami R, Dergal F, Ouksel L, Ammari A, Benladghem Z, Haouzi A, Bouktab S. Physical, chemical and antibacterial properties of 1-methyl-3-(4-vinylbenzyl) imidazol-3-ium chloride ionic liquid: Experimental and ab-initio analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Kukawka R, Spychalski M, Stróżyk E, Byzia E, Zajac A, Kaczyński P, Łozowicka B, Pospieszny H, Smiglak M. Synthesis, characterization and biological activity of bifunctional ionic liquids based on dodine ion. PEST MANAGEMENT SCIENCE 2022; 78:446-455. [PMID: 34505331 DOI: 10.1002/ps.6639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Development of new plant protection strategies has become an urgent matter in modern agriculture, in view of the evidently proved negative effect of currently used active ingredients of pesticides. In recent years, much effort has been made to eliminate the use of pesticides established to be toxic to pollinators. RESULTS In this study, we present a group of new bifunctional ionic liquids based on dodine (N-dodecylguanidine) cation whose physical and biological properties have been modified relative to those of the commercially available N-dodecylguanidine acetate. The decreased level of residue of active substances in plant tissues reduces their availability to pollinators, which increases the safety of their use. Moreover, lower environmental impact in combination with high antifungal activity and an additional biological function, that is the systemic acquired resistance induction, are in line with the goals of sustainable agriculture. CONCLUSION The presented approach shows the possibility of derivatization of commonly used fungicide into the form of bifunctional salts whose physical and biological properties can be easily modified. The paper reports successful design and synthesis of new sustainable and green chemicals for the modern agriculture, being less toxic to the environment and human health but still effective against pathogens. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rafal Kukawka
- Innosil Sp. z o.o, Rubiez 46, Poznan, 61-612, Poland
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Maciej Spychalski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Ewa Stróżyk
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Ewa Byzia
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Adrian Zajac
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| | - Piotr Kaczyński
- Plant Protection Institute - National Research Institute, Laboratory of Pesticide Residues, Chełmońskiego 22, Bialystok, 15-195, Poland
| | - Bożena Łozowicka
- Plant Protection Institute - National Research Institute, Laboratory of Pesticide Residues, Chełmońskiego 22, Bialystok, 15-195, Poland
| | - Henryk Pospieszny
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
- Plant Protection Institute - National Research Institute, Department of Virology and Bacteriology, Węgorka 20, Poznan, 60-318, Poland
| | - Marcin Smiglak
- Innosil Sp. z o.o, Rubiez 46, Poznan, 61-612, Poland
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan, 61-612, Poland
| |
Collapse
|
8
|
Barrulas RV, López-Iglesias C, Zanatta M, Casimiro T, Mármol G, Carrott MR, García-González CA, Corvo MC. The AEROPILs Generation: Novel Poly(Ionic Liquid)-Based Aerogels for CO2 Capture. Int J Mol Sci 2021; 23:ijms23010200. [PMID: 35008627 PMCID: PMC8745277 DOI: 10.3390/ijms23010200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
CO2 levels in the atmosphere are increasing exponentially. The current climate change effects motivate an urgent need for new and sustainable materials to capture CO2. Porous materials are particularly interesting for processes that take place near atmospheric pressure. However, materials design should not only consider the morphology, but also the chemical identity of the CO2 sorbent to enhance the affinity towards CO2. Poly(ionic liquid)s (PILs) can enhance CO2 sorption capacity, but tailoring the porosity is still a challenge. Aerogel’s properties grant production strategies that ensure a porosity control. In this work, we joined both worlds, PILs and aerogels, to produce a sustainable CO2 sorbent. PIL-chitosan aerogels (AEROPILs) in the form of beads were successfully obtained with high porosity (94.6–97.0%) and surface areas (270–744 m2/g). AEROPILs were applied for the first time as CO2 sorbents. The combination of PILs with chitosan aerogels generally increased the CO2 sorption capability of these materials, being the maximum CO2 capture capacity obtained (0.70 mmol g−1, at 25 °C and 1 bar) for the CHT:P[DADMA]Cl30%AEROPIL.
Collapse
Affiliation(s)
- Raquel V. Barrulas
- i3N|Cenimat, Department of Materials Science (DCM), NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (R.V.B.); (M.Z.)
| | - Clara López-Iglesias
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (C.L.-I.); (C.A.G.-G.)
| | - Marcileia Zanatta
- i3N|Cenimat, Department of Materials Science (DCM), NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (R.V.B.); (M.Z.)
| | - Teresa Casimiro
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| | - Gonzalo Mármol
- LAQV-REQUIMTE, Instituto de Investigação e Formação Avançada, Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, 7000-671 Evora, Portugal; (G.M.); (M.R.C.)
| | - Manuela Ribeiro Carrott
- LAQV-REQUIMTE, Instituto de Investigação e Formação Avançada, Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, 7000-671 Evora, Portugal; (G.M.); (M.R.C.)
| | - Carlos A. García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (C.L.-I.); (C.A.G.-G.)
| | - Marta C. Corvo
- i3N|Cenimat, Department of Materials Science (DCM), NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (R.V.B.); (M.Z.)
- Correspondence: ; Tel.: +351-21-294-8562; Fax: +351-21-294-8558
| |
Collapse
|
9
|
Gavrila AM, Zaharia A, Paruch L, Perrin FX, Sarbu A, Olaru AG, Paruch AM, Iordache TV. Molecularly imprinted films and quaternary ammonium-functionalized microparticles working in tandem against pathogenic bacteria in wastewaters. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123026. [PMID: 32516646 DOI: 10.1016/j.jhazmat.2020.123026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Despite major efforts to combat pollution, the presence of pathogenic bacteria is still detected in surface water, soil and even crops due to poor purification of domestic and industrial wastewaters. Therefore, we have designed molecularly imprinted polymer films and quaternary ammonium-functionalized- kaolin microparticles to target specifically Gram-negative bacteria (GNB) and Gram-positive bacteria (GPB) in wastewaters and ensure a higher purification rate by working in tandem. According to the bacteriological indicators, a reduction by 90 % was registered for GNB (total coliforms and Escherichia coli O157) and by 77 % for GPB (Clostridium perfringens) in wastewaters. The reduction rates were confirmed when using pathogen genetic markers to quantify particular types of GNB and GPB, like Salmonella typhimurium (reduction up to 100 %),Campylobacter jejuni (reduction up to 70 %), Enterococcus faecalis (reduction up to 81 %), Clostridium perfringens (reduction up to 97 %) and Shiga toxin-producing Escherichia coli (reduction up to 64 %). In order to understand the bactericidal activity of prepared films and microparticles, we have performed several key analyses such as Cryo-TEM, to highlight the auto-assembly mechanism of components during the films formation, and 29 Si/13 C CP/MAS NMR, to reveal the way quaternary ammonium groups are grafted on the surface of kaolin microparticles.
Collapse
Affiliation(s)
- Ana-Mihaela Gavrila
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Advanced Polymer Materials and Polymer Recycling Group, Splaiul Independentei 202, 060021, Bucharest, Romania
| | - Anamaria Zaharia
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Advanced Polymer Materials and Polymer Recycling Group, Splaiul Independentei 202, 060021, Bucharest, Romania
| | - Lisa Paruch
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Fredrik A. Dahls vei 20, 1433, Aas, Norway
| | - Francois Xavier Perrin
- Université de Toulon, Laboratoire Matériaux Polymères Interfaces et Environnement Marin-MAPIEM EA 4323 SeaTech-Ecole d'ingénieurs, BP 20132, 83957, La Garde Cedex, France
| | - Andrei Sarbu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Advanced Polymer Materials and Polymer Recycling Group, Splaiul Independentei 202, 060021, Bucharest, Romania
| | | | - Adam Mariusz Paruch
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Fredrik A. Dahls vei 20, 1433, Aas, Norway.
| | - Tanta-Verona Iordache
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Advanced Polymer Materials and Polymer Recycling Group, Splaiul Independentei 202, 060021, Bucharest, Romania.
| |
Collapse
|
10
|
Maksym P, Tarnacka M, Bielas R, Hachuła B, Zajac A, Szpecht A, Smiglak M, Kaminski K, Paluch M. Structure-property relationships of tailored imidazolium- and pyrrolidinium-based poly(ionic liquid)s. Solid-like vs. gel-like systems. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zajac A, Szpecht A, Szymanska A, Zielinski D, Stolarska O, Smiglak M, Maciejewski H. Synthesis and characterization of nitrogen-based ionic liquids bearing allyl groups and examples of their application. NEW J CHEM 2020. [DOI: 10.1039/d0nj00303d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The synthesis and characterization of a series of allyl-functionalized ionic liquids and examples of their application in catalysts and surface-functionalizing compound formation.
Collapse
Affiliation(s)
- Adrian Zajac
- Materials Synthesis Group
- Poznan Science and Technology Park
- Adam Mickiewicz University Foundation
- 61-612 Poznan
- Poland
| | - Andrea Szpecht
- Materials Synthesis Group
- Poznan Science and Technology Park
- Adam Mickiewicz University Foundation
- 61-612 Poznan
- Poland
| | - Anna Szymanska
- Materials Synthesis Group
- Poznan Science and Technology Park
- Adam Mickiewicz University Foundation
- 61-612 Poznan
- Poland
| | - Dawid Zielinski
- Materials Synthesis Group
- Poznan Science and Technology Park
- Adam Mickiewicz University Foundation
- 61-612 Poznan
- Poland
| | - Olga Stolarska
- Materials Synthesis Group
- Poznan Science and Technology Park
- Adam Mickiewicz University Foundation
- 61-612 Poznan
- Poland
| | - Marcin Smiglak
- Materials Synthesis Group
- Poznan Science and Technology Park
- Adam Mickiewicz University Foundation
- 61-612 Poznan
- Poland
| | - Hieronim Maciejewski
- Materials Synthesis Group
- Poznan Science and Technology Park
- Adam Mickiewicz University Foundation
- 61-612 Poznan
- Poland
| |
Collapse
|