1
|
Zhang L, Fassioli F, Fu B, She ZS, Scholes GD. Modeling Excited-State Proton Transfer Using the Lindblad Equation: Quantification of Time-Resolved Spectroscopy with Mechanistic Insights. ACS PHYSICAL CHEMISTRY AU 2022; 3:107-118. [PMID: 36718263 PMCID: PMC9881171 DOI: 10.1021/acsphyschemau.2c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
The quantum dynamics of excited-state intramolecular proton transfer (ESIPT) is studied using a multilevel vibronic Hamiltonian and the Lindblad master equation. We simulate time-resolved fluorescence spectroscopy of 2-(2'-hydroxyphenyl) benzothiazole (HBT) and 10-hydroxybenzo[h]quinoline (HBQ), which suggests that the underlying mechanism behind the initial ultrafast rise and decay in the spectra is electronic state population that evolves simultaneously with proton wave packet dynamics. The results predict that the initial rise and decay signals at different wavelengths vary significantly with system properties in terms of their shape, the time, and the intensity of the maximum. These findings provide clues for data interpretation, mechanism validation, and control of the dynamics, and the model serves as an attempt toward clarifying ESIPT by direct comparison to time-resolved spectroscopy.
Collapse
Affiliation(s)
- Luhao Zhang
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Francesca Fassioli
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States,SISSA
− Scuola Internazionale Superiore di Studi Avanzati, 34136Trieste, TS, Italy,
| | - Bo Fu
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Zhen-Su She
- Department
of Mechanical and Engineering Science, Peking
University, Beijing100871, China,. Phone: +86-010-62766559
| | - Gregory D. Scholes
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States,. Phone: +1-609-258-0729
| |
Collapse
|
2
|
Shang C, Zhang Y, Sun C, Wang L. Tactfully improve the antioxidant activity of 2′-hydroxychalcone with the strategy of substituent, solvent and intramolecular hydrogen bond effects. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Unraveling excited state dynamics and photophysical properties for a series of phenol-quinoline derivatives by controlling hydrogen bond geometry. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Meng X, Song L, Han H, Zhao J, Zheng D. A novel mechanism of intramolecular proton transfer in the excited state of 3-hydroxy-4H-benzochromone derivatives: A new explanation at the theoretical level. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Meng X, Song L, Han H, Zhao J, Zheng D. Solvent polarity dependent ESIPT behavior for the novel flavonoid-based solvatofluorochromic chemosensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120383. [PMID: 34536893 DOI: 10.1016/j.saa.2021.120383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/07/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
In this work, we explore the excited-state intramolecular proton transfer (ESIPT) mechanisms and relative solvent effects for three novel 3-hydroxylflavone derivatives (i.e., HOF, SHOF, and NSHOF) in acetonitrile, dichloromethane, and toluene solvents. Through calculations, we optimize the structures of HOF, SHOF, and NSHOF. Through the analysis of a series of structural parameters related to hydrogen bonding interactions, it could be found that the hydrogen bonds of the three derivatives are all enhanced in the S1 state, and more importantly, the excited-state hydrogen bonds of HOF are stronger than those of SHOF and NSHOF. In order to explore the effects of solvent polarity, we analyze the core-valence bifurcation (CVB) index, infrared (IR) vibration spectrum, and the potential energy curves. We find that for HOF, SHOF, and NSHOF, the strength of the excited-state hydrogen bonds increases as the solvent polarity decreases. The solvent polarity dependent ESIPT mechanisms pave the way for further designing novel flavonoid-based solvatofluorochromic probes in future.
Collapse
Affiliation(s)
- Xuan Meng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Liying Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Haiyun Han
- People's Hospital of Dingtao District, Heze, Shandong Province 274199, China
| | - Jinfeng Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Tighadouini S, Roby O, Mortada S, Lakbaibi Z, Radi S, Al-Ali A, Faouzi MEA, Ferbinteanu M, Garcia Y, Al-Zaqri N, Zarrouk A, Warad I. Crystal structure, physicochemical, DFT, optical, keto-enol tautomerization, docking, and anti-diabetic studies of (Z)-pyrazol β-keto-enol derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Li C, Hu B, Cao Y, Li Y. Elaborating the excited-state double proton transfer mechanism and multiple fluorescent characteristics of 3,5-bis(2-hydroxypheny)-1H-1,2,4-triazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119854. [PMID: 33933943 DOI: 10.1016/j.saa.2021.119854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Recently, Krishnamoorthy and coworkers reported a new type of proton transfer, which was labeled as 'proton transfer triggered proton transfer', in 3,5-bis(2-hydroxypheny)-1H-1,2,4-triazole (bis-HPTA). In this work, the excited-state double proton transfer (ESDPT) mechanism and multiple fluorescent characteristics of bis-HPTA were investigated. Upon photo-excitation, the intramolecular hydrogen bonding strength changed and the electron density of bis-HPTA redistributed. These changes will affect the proton transfer process. In S0 state, the proton transfer processes of bis-HPTA were prohibited on the stepwise and concerted pathways. After vertical excitation to the S1 state, the ESIPT-II process was more likely to occur than the ESIPT-I process, which was contrary to the conclusion that the ESIPT-II process is blocked and the ESIPT-II process takes place after the ESIPT-I process proposed by Krishnamoorthy and coworkers. When the K2 tautomer was formed through the ESIPT-II process, the second proton transfer process on the stepwise pathway was prohibited. On another stepwise pathway, after the ESIPT-I process (form the K1 tautomer), the second proton transfer process should overcome a higher potential barrier than the ESIPT-I process to form ESDPT tautomer. On the concerted pathway, the bis-HPTA can synchronous transfer double protons to form the ESDPT tautomer. The ESDPT tautomer was unstable and immediately converted to the K2 tautomer via a barrierless reverse proton transfer process. Thus, the fluorescent maximum at 465 nm from the ESDPT tautomer reported by Krishnamoorthy and coworkers was ascribed to the K2 tautomer. Most of the fluorophores show dual fluorescent properties, while the bis-HPTA undergoing ESDPT process exhibited three well-separated fluorescent peaks, corresponding to its normal form (438 nm), K1 tautomer (462 nm) and K2 tautomer (450 nm), respectively.
Collapse
Affiliation(s)
- Chaozheng Li
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Bo Hu
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yonghua Cao
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yongfeng Li
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
8
|
Sukpattanacharoen C, Kungwan N. Theoretical insights of solvent effect on excited-state proton transfers of 2-aryl-3-hydroxyquinolone. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Zhao J, Jin B. Unraveling photo-excited behaviors and proton transfer mechanisms for coexisting 5-methoxy-salicylaldhyde azine isomers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Guerraoui A, Djedouani A, Jeanneau E, Boumaza A, Alsalme A, Zarrouk A, Salih KS, Warad I. Crystal structure and spectral of new hydrazine-pyran-dione derivative: DFT enol↔hydrazone tautomerization via zwitterionic intermediate, hirshfeld analysis and optical activity studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
|
12
|
Effect of nitrogen substitution and π-conjugation on photophysical properties and excited state intramolecular proton transfer reactions of methyl salicylate derivatives: Theoretical investigation. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Chaihan K, Kungwan N. Effect of number and different types of proton donors on excited-state intramolecular single and double proton transfer in bipyridine derivatives: theoretical insights. NEW J CHEM 2020. [DOI: 10.1039/d0nj01304h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intra-HBs are strengthened upon photoexcitation, confirmed by red-shift in vibrational mode and topology analysis. Number and type of donors result in difference in photophysical properties. Occurrence of ESIPT depends on barrier and reaction energy.
Collapse
Affiliation(s)
- Komsun Chaihan
- Department of Chemistry, Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
- The Graduate School
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
- Center of Excellence in Materials Science and Technology
| |
Collapse
|