1
|
Tang S, Yang Z, Zhang M, Guo M. A simple green method for in-situ selective extraction of Li from spent LiFePO 4 batteries by synergistic effect of deep-eutectic solvent and ozone. ENVIRONMENTAL RESEARCH 2023; 239:117393. [PMID: 37838204 DOI: 10.1016/j.envres.2023.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Efficient and clean extraction lithium (Li) from spent LiFePO4 batteries (LIBs) still remains a challenge. In this paper, a green deep eutectic solvent (DES) based on ethylene glycol (EG) and choline chloride (CC), combined with ozone (O3) from air source, realized highly selective leaching Li from LiFePO4 in situ for the first time. The influence of experimental parameters on Li and Fe leaching efficiencies (ηLi, ηFe) were studied by orthogonal and single-factor tests, and ηLi ≥ 92.2% while ηFe ≤ 1.6% were obtained under the optimal conditions (6 h, 20 g/L, 8EG:1CC, 40 °C). The impurity Fe in the filtrate was completely precipitated as amorphous FePO4·3H2O after heating (150 °C, 0.5 h), achieving a pure Li-solution. The leaching mechanism elucidated that the synergistic effect (acidification, replacement and oxidation reaction) between the DES and O3 determined the phase transition of Li and Fe, promoting the efficient selective extraction of Li and in-situ separation of Fe (FePO4). The average ηLi and ηFe were separately 85.4% and 2.0% after ten cycles of the 8EG:1CC, indicative of its' excellent reusability. Meanwhile, LiCl was recovered from the filtrate. This process avoided the use of strong acid/alkali and discharge of waste water, providing fresh perspectives on the green recovery of spent LiFePO4 batteries.
Collapse
Affiliation(s)
- Shujie Tang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ziyue Yang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Mei Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Min Guo
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| |
Collapse
|
2
|
Li Y, Li Y, Cao C, Li H, Fan X, Xu X, Zhu M. Solid-liquid phase change of choline chloride type deep eutectic solvents towards lubrication regime. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Lu B, Du R, Wang G, Wang Y, Dong S, Zhou D, Wang S, Li C. High-efficiency leaching of valuable metals from waste Li-ion batteries using deep eutectic solvents. ENVIRONMENTAL RESEARCH 2022; 212:113286. [PMID: 35452672 DOI: 10.1016/j.envres.2022.113286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/25/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
With the penetration of lithium-ion batteries (LIBs) into electric vehicles, the recycling of waste LIBs is inevitable from the perspective of health, economy and environmental protection. Herein is reported a novel green method for extracting valuable metals from the cathode of LIBs, in which the Deep Eutectic Solvent (DES) is used as leachate to dissolve electrode material waste. Mixing choline chloride (ChCl) and malonic acid is helpful to effectively improve the reduction ability of DES, resulting in superior leaching efficiency. At the lower temperature (100 °C), the leaching efficiency of cobalt and lithium reached up to 98.61% and 98.78%, respectively. X-ray absorption near edge structure (XANES) spectroscopy demonstrated that DESs could act as both leachate and reducing agent, which could destroy the covalent bonds of metal oxides to form a cobalt (II)-chlorine complex. This method is straightforward to operate and does not involve the additional reducing agents, which is held promise to bring economic and sustainable development prospects in the field of lithium battery development.
Collapse
Affiliation(s)
- Bing Lu
- School of Environment and Civil Engineering, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523106, Guangdong, China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, China
| | - Rong Du
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China, Spallation Neutron Source Science Center, Dongguan, China
| | - Gang Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523106, Guangdong, China.
| | - Yuwei Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523106, Guangdong, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Shiyong Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523106, Guangdong, China
| | - Changping Li
- School of Environment and Civil Engineering, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523106, Guangdong, China.
| |
Collapse
|
4
|
Ali R, Chinnam AK, Aswar VR. The Double and Triple Role of L-(+)-tartaric Acid and Dimethyl Urea: A Prevailing Green Approach in Organic Synthesis. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210111111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The deep eutectic mixtures (DESs), introduced as a novel alternative to usual volatile
organic solvents for organic transformations, have attracted tremendous attention of the
research community because of their low cost, negligible vapour pressure, low toxicity, biodegradability,
recyclability, insensitivity towards moisture, and ready availability from bulk
renewable resources. Although the low melting mixture of dimethyl urea (DMU)/L-(+)-
tartaric acid (TA) is still in infancy, it is very effective as it plays multiple roles such as solvent,
catalyst and/or reagent in the same pot for many crucial organic transformations. These
unique properties of the DMU/TA mixture prompted us to provide a quick overview of where
the field stands presently and where it might be going in the near future. To our best knowledge,
no review dealing with the applications of a low melting mixture of DMU/TA appeared
in the literature except the one published in 2017, describing only the chemistry of indole systems. Therefore, we
intended to reveal the developments of this versatile, low melting mixture in the modern organic synthesis since its
first report in 2011 by Köenig’s team to date. Hopefully, the present review article will be useful to the researcher
working not only in the arena of synthetic organic chemistry but also to the scientists working in other branches of
science and technology.
Collapse
Affiliation(s)
- Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Ajay Kumar Chinnam
- Department of Chemistry, University of Idaho, Moscow, Idaho, 83844-2343, United States
| | - Vikas R. Aswar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|