1
|
Nazar M, Ul Hassan Shah M, Ahmad A, Goto M, Zaireen Nisa Yahya W, Moniruzzaman M. Aggregation, toxicity, and biodegradability study of an ionic liquid-based formulation for effective oil spill remediation. CHEMOSPHERE 2023; 344:140412. [PMID: 37827466 DOI: 10.1016/j.chemosphere.2023.140412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/10/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Chemical dispersants are extensively used for marine oil spill remediation. However, the increased toxicity and low biodegradability of these dispersants restrict their employment in the marine environment. Hence, in this work, we have developed an eco-friendly formulation composed of an ionic liquid,1-butyl-3-methylimidazolium lauroyl sarcosinate [BMIM][Lausar] and sorbitan monooleate (Span) 80. Micellar and interfacial parameters, dispersion effectiveness, as well as the toxicity and biodegradability of the developed formulation were investigated. Micellar properties confirmed a high degree of synergism among the surfactant molecules and the formation of stable micelle. The dispersion effectiveness, at dispersant-to-oil ratio (DOR) of 1:25 (v/v), against three crude oils (Arab, Ratawi, and Doba) was assessed. We achieved a dispersion effectiveness of 68.49%, 74.05%, and 83.43% for Ratawi, Doba, and Arab crude oil, respectively, using a 70:30 (w/w) ratio of Span 80 to [BMIM][Lausar]. Furthermore, the results obtained from optical microscopy and particle size analysis (PSA) indicated that the oil droplet size decreased with higher DOR. Additionally, acute toxicity experiments were conducted on zebrafish (Danio rerio) using the developed formulation, confirming its non-toxic behavior, with LC50 values of 800 mg/L after 96 h. The formulation also exhibited high biodegradability, with only 25.01% of the original quantity remaining after 28 days. Hence, these results suggest that the new formulation has the potential to be a highly effective and environmentally friendly dispersant for oil spill remediation.
Collapse
Affiliation(s)
- Masooma Nazar
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Mansoor Ul Hassan Shah
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Aqeel Ahmad
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744, Moto-oka, Fukuoka, 819- 0395, Japan
| | - Wan Zaireen Nisa Yahya
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia; Center of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia; Center of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
2
|
Hernández-Grijalva MI, Serrano-Sandoval SN, Gutiérrez-Uribe JA, Serna-Saldivar SO, Milán-Carrillo J, Antunes-Ricardo M, Villela-Castrejón J, Guardado-Félix D. Application of protein fractions from selenized sprouted chickpeas as emulsifying agents and evaluation of their antioxidant properties. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Silicon-hybrid ionic liquid surfactant derived from natural oleic acid: Synthesis and properties of an aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Zhang Y, Mu M, Lu P, Zhao S, Fan Y, Liu X, Fang Y. Reversible formation/disruption of dynamic double-tailed surfactants in a binary mixture: effects on interfacial properties and aggregation behavior. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Chen H, Zhu B, Zhang Y, Liu X. Effect of selenium‐position on the redox responsivity of isomeric selenium‐containing anionic surfactants. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Chen
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi People's Republic of China
| | - Bo Zhu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi People's Republic of China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi People's Republic of China
| | - Xuefeng Liu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi People's Republic of China
| |
Collapse
|
6
|
Wang J, Zhang Y, Chu Z, Feng Y. Wormlike micelles formed by ultra-long-chain nonionic surfactant. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Yang Z, He S, Fang Y, Zhang Y. Viscoelastic Fluid Formed by Ultralong-Chain Erucic Acid-Base Ionic Liquid Surfactant Responds to Acid/Alkaline, CO 2, and Light. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3094-3102. [PMID: 33683107 DOI: 10.1021/acs.jafc.0c07466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a leftover of grease processing, the efficient utilization of erucic acid is still a challenge. An alternative strategy is to develop erucic acid-derived surfactants. However, erucic acid-based ionic liquid surfactants were barely involved. Here, a novel ionic liquid surfactant, benzyltrimethylammonium erucate (ErBTA), was developed by a simple neutralization reaction, and its aggregations in the diluted and concentrated solution were systematically studied by surface tension, conductivity, rheology, and cryo-TEM techniques. The results showed that ErBTA has a very low metaling point (-7.03 °C) and possesses excellent water solubility (Krafft temperature <4 °C). ErBTA alone starts to form micelles at a very low concentration (0.028 mmol/L) and then to form worm-based viscoelastic fluid at 4.07 mmol/L without any additives, exhibiting excellent self-assembly ability and thickening ability. This viscoelastic fluid formed by ErBTA can simultaneously respond to three stimuli: common acid/alkaline, CO2 gas, and light, accompanied by an interesting gel-sol conversion, reflecting microstructure transition from wormlike micelles to spherical micelles. Although in essence CO2 and light also act as pH regulators in the current system, they provide more sophisticated approaches to tune pH. Such a viscoelastic fluid with the characteristics of easy availability, renewability of raw materials, the simplicity of fabrication, good water-solubility, and excellent thickening ability may be an attractive candidate for clean fracturing in oil/gas recovery and fluid drag reduction.
Collapse
Affiliation(s)
- Zhe Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Shuai He
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Yinjun Fang
- Zanyu Technology Group Company Ltd., Hangzhou 310009, P. R. China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, P. R. China
| |
Collapse
|
8
|
Lu P, He S, Zhou Y, Zhang Y. Oxidation-Induced Breakage of the Imine Bond and Aggregate Transition in a Se-Containing Dynamic Covalent Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2833-2842. [PMID: 33615789 DOI: 10.1021/acs.langmuir.0c03609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlling the dynamic imine bonds upon a novel trigger except for pH and temperature is still a significant challenge. Here, a Se-containing imine-based dynamic covalent surfactant (HOBAB-BSeEA) was developed for the first time by mixing two precursors in situ: an asymmetric double-chain cationic surfactant bearing a formyl group at the terminal of one hydrophobic tail and a Se-containing amine (2-(benzylselanyl)ethan-1-amine) in order to confirm the effect of redox on the imine bonds. The imine bond in HOBAB-BSeEA can be regulated not only upon changing the pH as well as other common imine-based surfactants but also by oxidation. The conversion efficiency of imine bonds is closely related with the degree of oxidation and pH. Complete oxidation can decrease the conversion efficiency from ∼87 to 48%, which is comparable to the result of changing the pH from 10.0 to 7.0. With the formation and breaking of imine bonds, the surfactant can be reversibly switched between symmetric and asymmetric structures, accompanied by a morphological transition from vesicles to spherical micelles. Although oxidation cannot demolish all imine bonds, it can completely convert vesicles to spherical micelles, which is mainly ascribed to an increase in the polarity of the micellar microenvironment stemming from the oxidation of Se. However, this transition can only be achieved by reducing the pH to 5.0 instead of 7.0. Nile red loaded in HOBAB-BSeEA vesicles can be quickly, controllably, and step-by-step released upon oxidation stimulus but not pH. Understanding the mechanism of oxidation-induced breakage of imine bonds and disruption of vesicles would be useful in designing redox-responsive imine-based carriers that can unload cargoes according to the level of the local reactive oxygen species.
Collapse
Affiliation(s)
- Pingping Lu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shuai He
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Yue Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yongmin Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
9
|
Lu P, He S, Zhou Y, Zhang Y. Adsorption, micellization and antimicrobial activity of formyl-containing cationic surfactant in diluted aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
|