1
|
Desai V, Panchal M, Parikh J, Modi K, Vora M, Panjwani F, Jain VK. Fluorescence Quenching and the Chamber of Nitroaromatics: A Dinaphthoylated Oxacalix[4]arene's (DNOC) Adventure Captured through Computational and Experimental Study. J Fluoresc 2025; 35:121-130. [PMID: 37995071 DOI: 10.1007/s10895-023-03505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
This research presents the application of Dinaphthoylated Oxacalix[4]arene (DNOC) as a novel fluorescent receptor for the purpose of selectively detecting nitroaromatic compounds (NACs). The characterization of DNOC was conducted through the utilization of spectroscopic methods, including 1H-NMR, 13C-NMR, and ESI-MS. The receptor demonstrated significant selectivity in acetonitrile towards several nitroaromatic analytes, such as MNA, 2,4-DNT, 2,3-DNT, 1,3-DNB, 2,6-DNT, and 4-NT. This selectivity was validated by the measurement of emission spectra. The present study focuses on the examination of binding constants, employing Stern-Volmer analysis, as well as the determination of the lowest detection limit (3σ/Slope) and fluorescence quenching. These investigations aim to provide insights into the inclusion behavior of DNOC with each of the six analytes under fluorescence spectra investigation. Furthermore, the selectivity trend of the ligand DNOC for NAC detection is elucidated using Density Functional Theory (DFT) calculations conducted using the Gaussian 09 software. The examination of energy gaps existing between molecular orbitals, namely the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), provides a valuable understanding of electron-transfer processes and electronic interactions. Smaller energy gaps are indicative of heightened selectivity resulting from favorable electron-transfer processes, whereas bigger gaps suggest less selectivity attributable to weaker electronic contacts. This work integrates experimental and computational methodologies to provide a full understanding of the selective binding behavior of DNOC. As a result, DNOC emerges as a viable chemical sensor for detecting nitroaromatic explosives.
Collapse
Affiliation(s)
- Vishv Desai
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Manthan Panchal
- Department of Chemistry, Silver Oak Institute of Science, Silver Oak University, Ahmedabad, Gujarat, India.
| | - Jaymin Parikh
- Department of Chemistry, Faculty of Science, Ganpat University, Kherva, 384012, Mehsana, Gujarat, India
| | - Krunal Modi
- Department of Humanities and Science, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India.
| | - Manoj Vora
- Chemical Engineering Department, Institute of Technology, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Falak Panjwani
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Vinod Kumar Jain
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
2
|
Upadhyay H, Harikrishnan U, Bhatt D, Dhadnekar N, Kumar K, Panchal M, Trivedi P, Gaurang Sindhav, Modi K. A Highly Selective Pyrene Appended Oxacalixarene Receptor for MNA and 4-NP Detection: an Experimental and Computational Study. J Fluoresc 2024; 34:2825-2835. [PMID: 37924381 DOI: 10.1007/s10895-023-03470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
A novel pyrene-substituted oxacalixarene was designed and synthesized as a selective probe for the simultaneous detection of MNA and 4-NP. Utilizing 1H-NMR, 13C-NMR, and FT-IR analysis techniques, its structure was characterized. The binding property of BPOC to a variety of NACs, including 1,3-DNB, 2,3-DNT, 2,4-DNT, 2,6-DNT, 4-NP, 4-NT, and PA, revealed that the sensor binds to MNA and 4-NP with remarkable selectivity. Binding constant reveals lower detection limits of MNA is 0.2 µM and 0.3 µM for 4-NP. Using docking and density functional theory (DFT), computational insights were provided for investigating the stability and spectroscopic analysis of the inclusion complex. From molecular docking study, we observed the best docking score of BPOC with 4-NT and MNA complex. The calculations supplement the findings significantly and clarify the structural geometry and mode of interactions in supramolecular complexation. In an MTT experiment on human PBMC to check for cytotoxicity, this chemical was found to influence 1 × 105 cell viability dose-dependently.
Collapse
Affiliation(s)
- Himali Upadhyay
- Department of Biochemistry and Forensic Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat, India
| | - Uma Harikrishnan
- Department of Chemistry, St. Xavier's College, Navrangpura, Ahmedabad, Gujarat, India.
| | - Devanshi Bhatt
- Department of Biochemistry and Forensic Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat, India
| | - Namrata Dhadnekar
- Department of Biochemistry and Forensic Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat, India
| | - Kapil Kumar
- Department of Biochemistry and Forensic Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat, India
| | - Manthan Panchal
- Silver Oak Institute of Science, Silver Oak University, Ahmedabad, India
| | - Pooja Trivedi
- Department of Zoology, BMT, HGC and WBC, Gujarat University, Navrangpura, Ahmedabad, Gujarat, India
| | - Gaurang Sindhav
- Department of Zoology, BMT, HGC and WBC, Gujarat University, Navrangpura, Ahmedabad, Gujarat, India
| | - Krunal Modi
- Department of Humanity and Sciences, School of Engineering, Indrashil University, Mehsana-382740, Kadi, Gujarat, India
| |
Collapse
|
3
|
Patel N, Modi K, Bhatt K, Parikh J, Desai A, Jain B, Parmar N, Patel CN, Liska A, Ludvik J, Pillai S, Mohan B. Propyl-phthalimide Cyclotricatechylene-Based Chemosensor for Sulfosulfuron Detection: Hybrid Computational and Experimental Approach. ACS OMEGA 2023; 8:41523-41536. [PMID: 37969992 PMCID: PMC10633956 DOI: 10.1021/acsomega.3c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
The detection of trace amounts of sulfosulfuron, a pesticide of increasing importance, has become a pressing issue, prompting the development of effective chemosensors. In this study, we functionalized cyclotricatechylene (CTC) with propyl-phthalimide due to the presence of electronegative oxygen and nitrogen binding sites. Our optimized ligand displayed the highest docking score with sulfosulfuron, and experimental studies confirmed a significant fluorescence enhancement upon its interaction with sulfosulfuron. To gain a deeper understanding of the binding mechanism, we introduced density functional theory (DFT) studies. We carried out binding constant, Job's plot, and limit of detection (LOD) calculations to establish the effectiveness of our chemosensor as a selective detector for sulfosulfuron. These findings demonstrate the potential of our chemosensor for future applications in the field of pesticide detection.
Collapse
Affiliation(s)
- Nihal Patel
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Krunal Modi
- Department
of Humanity and Sciences, Indrashil University,
Kadi, Mehsana, Gujarat 382740, India
| | - Keyur Bhatt
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Jaymin Parikh
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Ajay Desai
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Bhavesh Jain
- Department
of Computer Science and Engineering, Indrashil
University, Kadi, Mehsana, Gujarat 382740, India
| | - Nirali Parmar
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Chirag N. Patel
- Department
of Botany, Bioinformatics and Climate Change Impacts Management, School
of Science, Gujarat University, Ahmedabad, Gujarat 380009, India
- Biotechnology
Research Center, Technology Innovation Institute, Abu Dhabi 9639, United Arab Emirates
| | - Alan Liska
- Department
of Molecular Electrochemistry and Catalysis, J. Heyrovsky Institute
of Physical Chemistry, Academy of Sciences
of the Czech Republic, Dolejskova 2155/3,182 23 Praha 8, Czech Republic
| | - Jiri Ludvik
- Department
of Molecular Electrochemistry and Catalysis, J. Heyrovsky Institute
of Physical Chemistry, Academy of Sciences
of the Czech Republic, Dolejskova 2155/3,182 23 Praha 8, Czech Republic
| | - Shibu Pillai
- Department
of Chemistry, Institute of Technology, Nirma
University, Ahmedabad, Gujarat 380009, India
| | - Brij Mohan
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
4
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Sci Int Synerg 2023; 6:100298. [PMID: 36685733 PMCID: PMC9845958 DOI: 10.1016/j.fsisyn.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Douglas J. Klapec
- Arson and Explosives Section I, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- Forensic Services, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
5
|
Mancuso F, Crisafulli D, Milone M, Irto A, Cigala RM, Lando G, Pisagatti I, Notti A, Gattuso G. Tetracationic-to-dianionic tetraamino-dihydroxy-tetraoxacalix[4]arene: A paraquat receptor for all seasons. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Vora M, Panchal M, Dey S, Pandya A, Athar M, Verma N, Irfan A, Jain V. Oxacalix[4]arene based dual-signalling fluorimetric and electrochemical chemosensor for the selective detection of nitroaromatic compounds. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
8
|
Panjwani F, Dey S, Kongor A, Kumar A, Panchal M, Modi K, Vora M, Kumar A, Jain VK. Pyrene functionalized oxacalix[4]arene architecture as dual readout sensor for expeditious recognition of cyanide anion. J Fluoresc 2022; 32:1425-1433. [PMID: 35438369 DOI: 10.1007/s10895-022-02924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
A pyrene functionalized oxacalix[4]arene architecture (DPOC) was utilized as a fluorescence probe for selective recognition of cyanide ions. The receptor DPOC shows excellent selectivity towards cyanide ion with a red shift of 108 nm in absorption band along with a significant change in colour from light yellow to pink. The fluorescence titration experiments further confirm the lower limit of detection as 1.7µM with no significant influences of competing anions. 1 H-NMR titration experiments support the deprotonation phenomena, as the -NH proton disappears upon successive addition of cyanide ions. The DFT calculation also indicates a certain increment of -NH bond length upon interaction with cyanide ions. The spectral properties as well as colour of DPOC-CN- system may be reversed upon the addition of Ag+/ Cu2+ ions up to 5 consecutive cycles. Moreover, DPOC coated "test strips" were prepared for visual detection of cyanide ions.
Collapse
Affiliation(s)
- Falak Panjwani
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Shuvankar Dey
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Anita Kongor
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Anshu Kumar
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Manthan Panchal
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Krunal Modi
- Faculty of Science, Department of Chemistry, Ganpat University, Kherva Mehsana, Gujarat, India
| | - Manoj Vora
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Ashu Kumar
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Vinod Kumar Jain
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India.
| |
Collapse
|
9
|
Design of bi-pyrene functionalized oxacalixarene probe for ratiometric detection of Fe3+ and PO43- ions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Verma A, Modi K, Dey S, Kongor A, Panchal M, Vora M, Panjwani F, Jain VK. Development of tBu-phenyl Acetamide Appended Thiacalix[4]arene as "Turn-ON" Fluorescent Probe for Selective Recognition of Hg(II) Ions. J Fluoresc 2022; 32:637-645. [PMID: 35025015 DOI: 10.1007/s10895-021-02860-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Herein, a novel N-(4-(tert-butyl)-phenyl)-2-chloroacetamide functionalized thiacalix[4]arene architecture, viz TCAN2PA has been synthesized and the sensing behaviour towards metal ions were explored. The probe, TCAN2PA displayed "turn-on" fluorescence response towards Hg(II) ions in acetonitrile over a series of competing common metal ions. A bathochromic shift in absorption band along with a significant "Turn-On" fluorescence behaviour of TCAN2PA was observed upon interaction with Hg(II) ions. The lower rim modification of thiacalixarene with N-(4-(tert-butyl)-phenyl)-2-chloroacetamide actively contributes toward the fluorescence property due to the presence of strong electron-donating aryl amido substituent. Fluorescence titration experiments were conducted to find out the limit of detection and to understand binding stoichiometry as well. The electron transfer interactions between the electron rich TCAN2PA host with Hg(II) ions have been postulated which is also supported by computational modelling insights.
Collapse
Affiliation(s)
- Ashukumar Verma
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Krunal Modi
- Department of Chemistry, Mehsana Urban Institute of Science, Ganpat University, Kherva, Gujarat, 384012, India
| | - Shuvankar Dey
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Anita Kongor
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Manthan Panchal
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Manoj Vora
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Falak Panjwani
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - V K Jain
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, 380009, India.
| |
Collapse
|
11
|
Parikh J, Bhatt K, Modi K, Patel N, Desai A, Kumar S, Mohan B. A versatile enrichment of functionalized calixarene as a facile sensor for amino acids. LUMINESCENCE 2022; 37:370-390. [PMID: 34994071 DOI: 10.1002/bio.4186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022]
Abstract
Amino acids have become the most important part of the human biological system due to their roles in the living processes. Role of amino acids stretches beyond their traditional role as a building block for proteins, deficiency of the same could lead to decreased immunity, digestive problems, depression, fertility issues, lower mental alertness, slowed growth in children, and many other health issues. The acute detection of amino acids is necessary to determine the human health domain. Here in this review, we summarize and study the calixarenes as a complex detailed being of an immeasurable value and its utilization for the amino acids' detection. The key factors responsible such as noncovalent forces, LOD and supramolecular chemistry of calixarenes with amino acids are described well. This study presents the most recent efforts made for the development of potential and highly efficient calixarene based sensors for the detection of amino acids.
Collapse
Affiliation(s)
- Jaymin Parikh
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Keyur Bhatt
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Krunal Modi
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Nihal Patel
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Ajay Desai
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Sandeep Kumar
- School of Science, Harbin Institute of Technology, Shenzhen, China
| | - Brij Mohan
- School of Science, Harbin Institute of Technology, Shenzhen, China
| |
Collapse
|
12
|
Gassoumi B, Echabaane M, Ben Mohamed FE, Nouar L, Madi F, Karayel A, Ghalla H, Castro ME, Melendez FJ, Özkınalı S, Rouis A, Ben Chaabane R. Azo-methoxy-calix[4]arene complexes with metal cations for chemical sensor applications: Characterization, QTAIM analyses and dispersion-corrected DFT- computations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120242. [PMID: 34358783 DOI: 10.1016/j.saa.2021.120242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
In this work, the structures, quantum chemical descriptors, morphologic characterization of the azo-methoxy-calix[4]arene were investigated. The analyses and interpretation of the theoretical and the experimental IR spectroscopy results for the corresponding compounds was performed. The complexation of the azo-methoxy-calix[4]arene with Zn2+,Hg2+ , Cu2+ , Co2+, Ni2+ , Pb2+ and Cd2+metal cations has been calculated by the dispersion corrected density functional theory (DFT-D3). The values of the interaction energies show that the specific molecule is more selective to the Cu2+ cation. The study of the reactivity parameters confirms that the azo-methoxy-calix[4]arene molecule is more reactive and sensitive to the Cu2+ cation than that Co2+ and Cd2+. In addition, the investigation of the electrophilic and nucleophilic sites has been studied by the molecular electrostatic potential (MEP) analysis. The Hirshfeld surface (HS) analysis of the azo-methoxy-calix[4]arene-Cu2+ interaction have been used to understand the Cu⋯hydrogen-bond donors formed between the cation and the specific compound. The Quantum Theory of Atoms in Molecules (QTAIM) via Non covalent Interaction (NCI) analysis was carried out to demonstrate the nature, the type and the strength of the interaction formed between the Cu2+ cation and the two symmetrical ligands and the cavity. Finally, the chemical sensor properties based on the Si/SiO2/Si3N4/Azo-methoxy-calix[4]arene for detection of Cu2+ cation were studied. Sensing performances are determined with a linear range from 10-5.2 to 10-2.2 M. The Si/SiO2/Si3N4/azo-methoxy-calix[4]arene structure is a promoter to have a good performance sensor.
Collapse
Affiliation(s)
- B Gassoumi
- Laboratory of Advanced Materials and Interfaces (LIMA), University of Monastir, Faculty of Science of Monastir,Avenue of Environnment, 5000 Monastir, Tunisia.
| | - M Echabaane
- Laboratory of Advanced Materials and Interfaces (LIMA), University of Monastir, Faculty of Science of Monastir,Avenue of Environnment, 5000 Monastir, Tunisia; NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Technopark of Sousse, B.P. 334, Sahloul, 4034 Sousse, Tunisia
| | - F E Ben Mohamed
- Department of Physics, Faculty of Arts and Sciences of AlMikhwah, Al-BAHA University, Al Baha, Saudi Arabia
| | - L Nouar
- Computational Chemistry and Nanostructures Laboratory, Department of Science matter, faculty of mathematics, computer science and material sciences, University on May 08, 1945, Guelma, Algeria.
| | - F Madi
- Computational Chemistry and Nanostructures Laboratory, Department of Science matter, faculty of mathematics, computer science and material sciences, University on May 08, 1945, Guelma, Algeria
| | - A Karayel
- Department of Physics, Faculty of Arts and Sciences, Hitit University, Çorum, Turkey
| | - H Ghalla
- Quantum and Statistical Physics Laboratory, Faculty of Science, University of Monastir, 5079 Monastir, Tunisia
| | - M E Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San, Claudio, Col. San Manuel Puebla C. P. 72570 Mexico
| | - F J Melendez
- Lab. de Química Teórica, Centro de Investigación, Depto. de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif. FCQ10, 22 Sur y San Claudio, Ciudad Universitaria, Col. San Manuel, C.P 72570. Puebla, Puebla, Mexico
| | - S Özkınalı
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, Çorum, Turkey
| | - A Rouis
- Laboratory of Advanced Materials and Interfaces (LIMA), University of Monastir, Faculty of Science of Monastir,Avenue of Environnment, 5000 Monastir, Tunisia
| | - R Ben Chaabane
- Laboratory of Advanced Materials and Interfaces (LIMA), University of Monastir, Faculty of Science of Monastir,Avenue of Environnment, 5000 Monastir, Tunisia.
| |
Collapse
|
13
|
Desai AL, Patel NP, Parikh JH, Modi KM, Bhatt KD. In Silico Studies and Design of Scrupulous Novel Sensor for Nitro Aromatics Compounds and Metal Ions Detection. J Fluoresc 2022; 32:483-504. [PMID: 34981281 DOI: 10.1007/s10895-021-02866-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022]
Abstract
A Novel calix[4]pyrrole system bearing carboxylic acid functionality [ABuCP] has been synthesized and its interaction towards various nitroaromatics compounds [NACs] were investigated. ABuCP showed significant color change with 1,3-dinitro benzene (1,3-DNB) in comparison to the solution of other nitroaromatic compounds such as 2,3-dinitro toluene (2,3-DNT), 2,4-dinitro toluene (2,4-DNT), 2,6-dinitro toluene (2,6-DNT), 4-NBB (4-nitrobenzyl bromide) and 4-nitro toluene (4-NT). The ABuCP-1,3-DNB complex produces a red shift in absorption spectra based on charge transfer mediated recognition. Additionally, the density functional theory calculation confirmed the possible mechanism for the binding of 1,3-DNB as a guest is well supported by the calculation of other parameters such as hardness, stabilization energy, softness, electrophilicity index and chemical potential. The TDDFT calculation facilitates the understanding of the proper binding mechanism in reference to experimental results. Additionally we have also developed its derivative which acts as a new fluorescent sensor which can selectively recognize Sr(II) ions. In this view its aminoanthraquinone derivative of calix[4]pyrrole i.e. ABuCPTAA is synthesized which also results in generation of high fluorescence capability sensor.
Collapse
Affiliation(s)
- Ajay L Desai
- Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva, Gujarat, 384012, India
| | - Nihal P Patel
- Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva, Gujarat, 384012, India
| | - Jaymin H Parikh
- Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva, Gujarat, 384012, India
| | - Krunal M Modi
- Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva, Gujarat, 384012, India.
| | - Keyur D Bhatt
- Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva, Gujarat, 384012, India.
| |
Collapse
|
14
|
Jiang Y, Dong J, Li R, Sun F, Wu H. Channel regulation through solvents for
Cd‐MOFs
based on
p
‐methoxyphenyl imidazole dicarboxylate: Synthesis, crystal structure, fluorescence, and explosive identification. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yuxuan Jiang
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People's Republic of China
| | - Jianping Dong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People's Republic of China
| | - Ruixue Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People's Republic of China
| | - Fugang Sun
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People's Republic of China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People's Republic of China
| |
Collapse
|
15
|
A highly selective anthraquinone appended oxacalixarene receptor for fluorescent ICT sensing of F− ions: an experimental and computational study. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01862-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|