1
|
Ogawa R, Kusudo H, Omori T, Smith ER, Joly L, Merabia S, Yamaguchi Y. Mechanical and thermodynamic routes to the liquid-liquid interfacial tension and mixing free energy by molecular dynamics. J Chem Phys 2024; 161:224708. [PMID: 39665325 DOI: 10.1063/5.0238862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
In this study, we carried out equilibrium molecular dynamics (EMD) simulations of the liquid-liquid (LL) interface between two different Lennard-Jones components with varying miscibility, where we examined the relation between the interfacial tension and the free energy to completely isolate the two liquids using both a mechanical and thermodynamic approach. Using the mechanical approach, we obtained a stress distribution around a quasi-one-dimensional EMD system with a flat LL interface. From the stress distribution, we calculated the LL interfacial tension based on Bakker's equation, which uses the stress anisotropy around the interface, and measured how it varied with miscibility. The second approach uses thermodynamic integration by enforcing quasi-static isolation of the two liquids to calculate the free energy. This uses the same EMD systems as the mechanical approach, with both extended dry-surface and phantom-wall (PW) schemes applied. When the two components were immiscible, the mechanical interfacial tension and isolation free energy were in good agreement. When the components were miscible, the values were significantly different. From the result of PW for the case of completely mixed liquids, the difference was attributed to the additional free energy required to separate the binary mixture into single components against the osmotic pressure prior to the complete detachment of the two components. This provides a new route to obtain the free energy of mixing.
Collapse
Affiliation(s)
- Rei Ogawa
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Hiroki Kusudo
- Department of Mechanical Systems Engineering, Tohoku University, 6-6-01 Aramaki Aoba-ku, Sendai 980-8579, Japan
| | - Takeshi Omori
- Department of Mechanical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Edward R Smith
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Laurent Joly
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, F69100 Villeurbanne, France
| | - Samy Merabia
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, F69100 Villeurbanne, France
| | - Yasutaka Yamaguchi
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
- Water Frontier Research Center (WaTUS), Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
2
|
Chen L, Guo C, Tao X, Ding X, Zhang K, Zhang C, Chen Q, Zheng Y, Li M, Zhang H, Xiong Y, Guan Y, Wu Z, Tian Y, Liu G. Structures of Liquid-Liquid Interfaces in Partially Miscible Systems Revealed by Soft X-ray Imaging. J Phys Chem Lett 2024; 15:8265-8271. [PMID: 39106046 DOI: 10.1021/acs.jpclett.4c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The properties of liquid-liquid interfaces are intricately linked to its structure, with a particular focus on the concentration distribution within the interface. To obtain precise information regarding the concentration distribution, we have developed a high-resolution soft X-ray imaging method for liquid-liquid interfaces. This work focused on representative partially miscible systems, analyzing the interfacial concentration distribution profiles of water-alkanols under both steady-state and dynamic processes, and obtaining the diffusion coefficients of different water concentrations in alkanols. Significant disparities in concentration distributions and the concentration-related diffusion coefficients were observed despite comparable diffusion distances within the same system across different states. Meanwhile, it was found that alkanols exhibit adsorption phenomena at the interface. This newfound knowledge serves as a crucial stepping stone toward a deeper understanding of partially miscible systems. Our study opens a way to explore liquid-liquid interface information with high-resolution.
Collapse
Affiliation(s)
- Lijuan Chen
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Chenfei Guo
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Xiayu Tao
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Xu Ding
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Kuanqiang Zhang
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Chao Zhang
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Qiang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yutong Zheng
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Meng Li
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Haonan Zhang
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Ying Xiong
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Yong Guan
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Zhao Wu
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Yangchao Tian
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| | - Gang Liu
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Hilburg SL, Jin T, Alexander-Katz A. Dynamic transformation of bio-inspired single-chain nanoparticles at interfaces. J Chem Phys 2023; 159:114902. [PMID: 37712796 DOI: 10.1063/5.0164475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
The interfacial behavior of macromolecules dictates their intermolecular interactions, which can impact the processing and application of polymers for pharmaceutical and synthetic use. Using molecular dynamics simulations, we observe the evolution of a random heteropolymer in the presence of liquid-liquid interfaces. The system of interest forms single-chain nanoparticles through hydrophobic collapse in water, lacking permanent crosslinks and making their morphology mutable in new environments. Complex amphiphilic polymers are shown to be capable of stabilizing high interfacial tension water-hexane interfaces, often unfolding to maximize surface coverage. Despite drastic changes to polymer conformation, monomer presence in the water phase is generally maintained and most changes are due to increased hydrophobic solvent exposure toward the oil phase. These results are then compared to the behavior at the water-graphene interface, where the macromolecules adsorb but do not remodel. The polymer's behavior is shown to depend significantly on both its own amphiphilic character and the deformability of the interface.
Collapse
Affiliation(s)
- Shayna L Hilburg
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tianyi Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
4
|
Zhang Q, Li W, Qiao K, Han Y. Surface premelting and melting of colloidal glasses. SCIENCE ADVANCES 2023; 9:eadf1101. [PMID: 36930717 PMCID: PMC10022898 DOI: 10.1126/sciadv.adf1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The nature of liquid-to-glass transition is a major puzzle in science. A similar challenge exists in glass-to-liquid transition, i.e., glass melting, especially for the poorly investigated surface effects. Here, we assemble colloidal glasses by vapor deposition and melt them by tuning particle attractions. The structural and dynamic parameters saturate at different depths, which define a surface liquid layer and an intermediate glassy layer. The power-law growth of both layers and melting front behaviors at different heating rates are similar to crystal premelting and melting, suggesting that premelting and melting can be generalized to amorphous solids. The measured single-particle kinetics reveal various features and confirm theoretical predictions for glass surface layer.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wei Li
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Kaiyao Qiao
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yilong Han
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
5
|
Hantal G, Sega M, Horvai G, Jedlovszky P. Contribution of Different Molecules and Moieties to the Surface Tension in Aqueous Surfactant Solutions. II: Role of the Size and Charge Sign of the Counterions. J Phys Chem B 2021; 125:9005-9018. [PMID: 34319728 DOI: 10.1021/acs.jpcb.1c04216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the role of the counterion species in surfactant solutions is a complicated task, made harder by the fact that, experimentally, it is not possible to vary independently bulk and surface quantities. Here, we perform molecular dynamics simulations at constant surface coverage of the liquid/vapor interface of lithium, sodium, potassium, rubidium, and cesium dodecyl sulfate aqueous solutions. We investigate the effect of counterion type and charge sign on the surface tension of the solution, analyzing the contribution of different species and moieties to the lateral pressure profile. The observed trends are qualitatively compatible with the Hofmeister series, with the notable exception of sodium. We point out a possible shortcoming of what is at the moment, in our experience, the most realistic nonpolarizable force field (CHARMM36) that includes the parametrization for the whole series of alkali counterions. In the artificial system where the counterion and surfactant charges are inverted in sign, the counterions become considerably harder. This charge inversion changes considerably the surface tension contributions of the counterions, surfactant headgroups, and water molecules, stressing the key role of the hardness of the counterions in this respect. However, the hydration free energy gain of the counterions, occurring upon charge inversion, is compensated by the concomitant free energy loss of the headgroups and water molecules, leading to a negligible change in the surface tension of the entire system.
Collapse
Affiliation(s)
- György Hantal
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, A-1190 Vienna, Austria.,Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary
| | - Marcello Sega
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11),Fürther Straße 248, D-90429 Nürnberg, Germany
| | - George Horvai
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary
| |
Collapse
|
6
|
Bergfreund J, Siegenthaler S, Lutz-Bueno V, Bertsch P, Fischer P. Surfactant Adsorption to Different Fluid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6722-6727. [PMID: 34030438 DOI: 10.1021/acs.langmuir.1c00668] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surfactant adsorption to fluid interfaces is ubiquitous in biological systems, industrial applications, and scientific fields. Herein, we unravel the impact of the hydrophobic phase (air and oil) and the role of oil polarity on the adsorption of surfactants to fluid interfaces. We investigated the adsorption of anionic (sodium dodecyl sulfate), cationic (dodecyltrimethylammonium bromide), and non-ionic (polyoxyethylene-(23)-monododecyl ether) surfactants at different interfaces, including air and oils, with a wide range of polarities. The surfactant-induced interfacial tension decrease, called the interfacial pressure, correlates linearly with the initial interfacial tension of the clean oil-water interface and describes the experimental results of over 30 studies from the literature. The higher interfacial competition of surfactant and polar oil molecules caused the number of adsorbed molecules at the interface to drop. Further, we found that the critical micelle concentration of surfactants in water correlates to the solubility of the oil molecules in water. Hence, the nature of the oil affects the adsorption behavior and equilibrium state of the surfactant at fluid interfaces. These results broaden our understanding and enable better predictability of the interactions of surfactants with hydrophobic phases, which is essential for emulsion, foam, and capsule formation, pharmaceutical commodities, cosmetics, and many food products.
Collapse
Affiliation(s)
- Jotam Bergfreund
- Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Sarina Siegenthaler
- Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Viviane Lutz-Bueno
- Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Pascal Bertsch
- Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Peter Fischer
- Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
7
|
Algaba J, Mı Guez JM, Gómez-Álvarez P, Mejı A A, Blas FJ. Preferential Orientations and Anomalous Interfacial Tensions in Aqueous Solutions of Alcohols. J Phys Chem B 2020; 124:8388-8401. [PMID: 32869644 DOI: 10.1021/acs.jpcb.0c05412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Literature studies on interfacial tension versus temperature between normal alcohols and water show that it increases with temperature and exhibits a maximum value at a given temperature depending on the molecular weight of the alcohol. This very unusual behavior is supposedly accompanied by the formation of monolayers of alcohol molecules oriented preferentially at the interface, a structural issue not confirmed until now. We use molecular-based models for water and alcohols in combination with molecular dynamics simulations to provide physical insights, from a molecular perspective, into the structural and thermodynamic behavior at the liquid-liquid interfaces of aqueous solutions of alcohols.
Collapse
Affiliation(s)
- Jesús Algaba
- Laboratorio de Simulación Molecular y Quı́mica Computacional, CIQSO-Centro de Investigación en Quı́mica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - José Manuel Mı Guez
- Laboratorio de Simulación Molecular y Quı́mica Computacional, CIQSO-Centro de Investigación en Quı́mica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - Paula Gómez-Álvarez
- Laboratorio de Simulación Molecular y Quı́mica Computacional, CIQSO-Centro de Investigación en Quı́mica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - Andrés Mejı A
- Departamento de Ingenierı́a Quı́mica, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
| | - Felipe J Blas
- Laboratorio de Simulación Molecular y Quı́mica Computacional, CIQSO-Centro de Investigación en Quı́mica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| |
Collapse
|